Monetary-Fiscal Interactions and the Euro Area’s Malaise

Marek Jarociński, European Central Bank

Bartosz Maćkowiak, European Central Bank and CEPR

“Next Steps for the FTPL,” University of Chicago, April 1, 2016

The views expressed here are solely those of the authors and do not necessarily reflect the views of the ECB
Research questions

• What is the relation between how monetary and fiscal policy interact in the euro area and the macroeconomic outcomes?

 — Real GDP per capita at the end of 2015 was 2 percent lower than in 2008.

 — Inflation has been low and the ECB’s policy rates have been close to the lower bound.

 — Government bond spreads, about zero until 2009, increased sharply and subsequently decreased to low levels.

• What kind of interaction between monetary and fiscal policy in the euro area would improve macroeconomic outcomes?
This paper

- The current configuration of monetary and fiscal policy in the euro area has been central to the recent outcomes.
 - We solve a simple, non-linear general equilibrium model with sticky prices.
 - The model mimics the recent euro area data.

- An alternative configuration of monetary and fiscal policy, with a non-defaultable Eurobond, can lead to much improved outcomes.
Model

- A single economy, homogenous households and firms, households pay lump-sum taxes to N fiscal authorities.

- The monetary authority follows an active rule subject to the lower bound.

- Fiscal authority n issues one-period nominal bonds, follows a passive rule that includes feedback from output.
 - Defaults if debt exceeds an upper bound, the upper bound is an i.i.d. random variable.
Indeterminacy

- The model has two steady states: “intended” and “unintended” (Benhabib et al., 2001).

- After a disturbance that decreases the value of current consumption there are multiple solutions for \(\{Y_t, \Pi_t, R_t\}_{t=1}^{t=\infty} \).

- There are multiple solutions for the interest rate on debt of fiscal authority \(n \).
Baseline simulation

- A “confidence-about-inflation” sunspot can occur with probability p each year so long as the shock has not occurred.

 - After the shock has occurred, the economy converges to the unintended steady state.

- A “confidence-about-debt” sunspot picks a solution for the interest rate on debt of fiscal authority n.

- Fiscal authorities: “North” is GER, FRA, NED, “South” is ITA, SPA.
Figure 3: The baseline simulation versus the data

Output, Y

2008 normalized to 1

Inflation rate, 100(Π-1)

Percent per annum

Central bank interest rate, 100(R-1)

Percent per annum

Government bond spread, 100(Z₂-Z₁)

Percentage points per annum
Policy experiment: a centrally-operated fund issuing Eurobonds

- Ready to purchase debt of fiscal authority n so long as that authority follows a prescribed rule.

- If $R_t = 1$, the monetary authority switches to setting an exogenous path for R_t converging to the intended steady state.

- If $R_t = 1$, fiscal authority n switches to setting

$$\tilde{S}_{nt} = \tilde{\psi}_n + \psi_B \left[\tilde{B}_{n,t-1} - \theta_n \left(\sum_n \tilde{B}_{n,t-1} \right) \right] + \psi_{Yn} (Y_t - Y)$$

where $\sum_n \theta_n = 1$ (Sims, 1997). An active fiscal policy for the union as a whole, implying a unique solution for $\{Y_t, \Pi_t, R_t\}_{t=1}^{t=\infty}$.

Figure 4: The policy experiment in Section 5.1 vs. the baseline simulation

Output, Y

Inflation rate, $100(\Pi - 1)$

Central bank interest rate, $100(R - 1)$

Government bond spread, $100(Z_2 - Z_1)$
Default by a national fiscal authority

- If fiscal authority n deviates from the prescribed rule, the fund refuses to purchase its debt and the authority can default. We use the model to assess the consequences of default.

- Splitting $\tilde{S}_{nt} = \tilde{S}_{nt}^F + \tilde{S}_{nt}^H$ between the fund and households:

 $$\tilde{S}_{nt}^F = \bar{\psi}_n + \psi_B \left[\tilde{B}_{n,t-1}^F - \theta_n \left(\sum_n \tilde{B}_{n,t-1}^F \right) \right] + \psi_Y n (Y_t - Y)$$

 $$\tilde{S}_{nt}^H = \psi_n + \psi_B \tilde{B}_{n,t-1}^H + \psi_Y n (Y_t - Y)$$

- We suppose that South deviates by lowering $\bar{\psi}_2$ and defaulting on households, with recovery rate $\Delta = \left(\bar{\psi}_2^{\text{new}} / \bar{\psi}_2^{\text{old}} \right)$.

Figure 5: The effect of default on the policy experiment from Section 5.1

Output, Y

- Simulation without default, Section 5.1
- Moderate default scenario, Section 5.2

Inflation rate, 100($\Pi - 1$)

- Simulation without default, Section 5.1
- Moderate default scenario, Section 5.2

Output, Y

- Simulation without default, Section 5.1
- Severe default scenario, Section 5.2

Inflation rate, 100($\Pi - 1$)

- Simulation without default, Section 5.1
- Severe default scenario, Section 5.2
Conclusions from the simple model

- The current configuration of monetary and fiscal policy in the euro area has been central to the recent macroeconomic outcomes.

- An alternative configuration of monetary and fiscal policy, with a non-defaultable Eurobond, could have led to much improved outcomes.
Back to the research questions

• “What is the relation between how monetary and fiscal policy interact in the euro area and the macroeconomic outcomes?”

• “What kind of interaction between monetary and fiscal policy in the euro area would improve macroeconomic outcomes?”

• Much work remains, e.g., modeling country heterogeneity, adding debt of different maturities, bringing the model closer to the data.