Dynamic Mechanisms without Money

Yingni Guo,1 Johannes Hörner2

1Northwestern
2Yale

July 11, 2015
Features

- Agent sole able to evaluate the (changing) state of the world.
Features

- Agent sole able to evaluate the (changing) state of the world.
- Principal with commitment has the decision rights.
Features

- Agent sole able to evaluate the (changing) state of the world.
- Principal with commitment has the decision rights.
- No transfers to facilitate truth-telling.
Features

- Agent sole able to evaluate the (changing) state of the world.
- Principal with commitment has the decision rights.
- No transfers to facilitate truth-telling.
- No hard (possibly statistical) evidence either.
Some Examples

- Patients want the nurses’ attention.
Some Examples

- Patients want the nurses’ attention.
- Managers want the go-ahead for their projects.
Some Examples

- Patients want the nurses’ attention.
- Managers want the go-ahead for their projects.
- State departments want to expand.
Some Examples

- Patients want the nurses’ attention.
- Managers want the go-ahead for their projects.
- State departments want to expand.
- Cities/States want more resources.
Objective

- Is there a “simple” optimal policy?
Objective

- Is there a “simple” optimal policy?
- How does utility/inefficiency evolve over time?
Objective

- Is there a “simple” optimal policy?
- How does utility/inefficiency evolve over time?
- How does this depend on the lack of transfers?
1. **Linking incentives:**

2. **Dynamic mechanism design:**

3. **Virtual budgets/“Chip” Mechanisms:**

4. **Dynamic contracting (“Immizeration”):**
Related Literature

1. **Linking incentives:**

2. **Dynamic mechanism design:**

3. **Virtual budgets/“Chip” Mechanisms:**

4. **Dynamic contracting (“Immizeration”):**
The Model
Discrete time $n = 0, 1, \ldots$
Discrete time $n = 0, 1, \ldots$

Agent’s type-value is $v_n \in \{l, h\}$.
Discrete time $n = 0, 1, \ldots$

Agent’s type-value is $v_n \in \{l, h\}$.

Cost to supply unit is $c > 0$, with $h > c > l > 0$.
Discrete time $n = 0, 1, \ldots$

Agent’s type=value is $\nu_n \in \{l, h\}$.

Cost to supply unit is $c > 0$, with $h > c > l > 0$.

Values follow a Markov chain, with:

$$\mathbf{P}[\nu_{n+1} = h \mid \nu_n = h] = 1 - \rho_h, \quad \mathbf{P}[\nu_{n+1} = l \mid \nu_n = l] = 1 - \rho_l.$$

Assume $1 - \rho_h \geq \rho_l$.

(h is more likely to be followed by h than l is.)
Discrete time $n = 0, 1, \ldots$.

Agent’s type=value is $\nu_n \in \{l, h\}$.

Cost to supply unit is $c > 0$, with $h > c > l > 0$.

Values follow a Markov chain, with:

$$P[\nu_{n+1} = h \mid \nu_n = h] = 1 - \rho_h, \quad P[\nu_{n+1} = l \mid \nu_n = l] = 1 - \rho_l.$$

Assume $1 - \rho_h \geq \rho_l$.

(h is more likely to be followed by h than l is.)

The (invariant) probability of h and the (unconditional) expected value of the unit are

$$q := \rho_l/(\rho_h + \rho_l), \quad \mu := \mathbb{E}[\nu] = qh + (1 - q)l.$$
Discount factor $\delta \in (0, 1)$.
Discount factor $\delta \in (0, 1)$.

Agent’s **Utility**: $U = (1 - \delta) \sum_{n=0}^{\infty} \delta^n x_n v_n$,

Principal’s **Payoff** (Welfare): $W = (1 - \delta) \sum_{n=0}^{\infty} \delta^n x_n (v_n - c)$,

where $x_n \in \{0, 1\}$ is the principal’s decision to supply in period n.
Discount factor $\delta \in (0, 1)$.

Agent’s Utility:
\[U = (1 - \delta) \sum_{n=0}^{\infty} \delta^n x_n v_n, \]

Principal’s Payoff (Welfare):
\[W = (1 - \delta) \sum_{n=0}^{\infty} \delta^n x_n (v_n - c), \]

where $x_n \in \{0, 1\}$ is the principal’s decision to supply in period n.

In each period, the agent makes a report m, and the principal acts.
Discount factor $\delta \in (0, 1)$.

Agent’s **Utility**: $U = (1 - \delta) \sum_{n=0}^{\infty} \delta^n x_n v_n$,

Principal’s **Payoff** (Welfare): $W = (1 - \delta) \sum_{n=0}^{\infty} \delta^n x_n (v_n - c)$,

where $x_n \in \{0, 1\}$ is the principal’s decision to supply in period n.

In each period, the agent makes a report m, and the principal acts.

Revelation Principle $\Rightarrow m \in M := \{l, h\}$, and Agent tells the truth.
Discount factor $\delta \in (0, 1)$.

Agent’s **Utility**: $U = (1 - \delta) \sum_{n=0}^{\infty} \delta^n x_n v_n,$

Principal’s **Payoff** (Welfare): $W = (1 - \delta) \sum_{n=0}^{\infty} \delta^n x_n (v_n - c),$

where $x_n \in \{0, 1\}$ is the principal’s decision to supply in period n.

In each period, the agent makes a report m, and the principal acts.

Revelation Principle $\Rightarrow m \in M := \{l, h\}$, and Agent tells the truth.

A **policy** is a map $x = (x_n)_{n \geq 0}$, $x_n : M^n \to \Delta(\{0, 1\}).$
Roadmap

1. i.i.d., Binary Values.
Roadmap

1. i.i.d., Binary Values.

i.i.d. Values
Wlog, the agent’s *ex ante* utility is a valid state variable.
Wlog, the agent’s *ex ante* utility is a valid state variable.

A policy is represented as a map $U \mapsto (p_m, U_m)$, $m = l, h$, with

$$p_m \in [0, 1], \quad U_m \in [0, \mu].$$

Note that all utilities are in $[0, \mu]$.
The Optimization Program

The principal’s problem is a Markov decision problem.
The Optimization Program

The principal’s problem is a Markov decision problem.

The optimality equation is, for any \(U \in [0, \mu] \),

\[
W(U) = \sup_{(p_m, U_m)} \left\{ (1 - \delta) (qp_h(h - c) + (1 - q)p_l(l - c)) + \delta (qW(U_h) + (1 - q)W(U_l)) \right\},
\]
The Optimization Program

The principal’s problem is a Markov decision problem.

The optimality equation is, for any $U \in [0, \mu]$,

$$W(U) = \sup_{(p_m, U_m)} \{(1 - \delta)(qp_h(h - c) + (1 - q)p_l(l - c)) + \delta (qW(U_h) + (1 - q)W(U_l))\},$$

s.t. (“Promise Keeping”)

$$U = (1 - \delta)(qp_hh + (1 - q)p_ll) + \delta (qU_h + (1 - q)U_l),$$
The Optimization Program

The principal’s problem is a Markov decision problem.

The optimality equation is, for any \(U \in [0, \mu] \),

\[
W(U) = \sup_{(p_m, U_m)} \left\{ (1 - \delta) (qp_h(h - c) + (1 - q)p_l(l - c)) + \delta (qW(U_h) + (1 - q)W(U_l)) \right\},
\]

s.t. (“Promise Keeping”)

\[
U = (1 - \delta) (qp_h h + (1 - q)p_l l) + \delta (qU_h + (1 - q)U_l),
\]

and, for \(m = l, h, m' \neq m \) (“Incentive Constraint-m”)

\[
(1 - \delta)p_m m + \delta U_m \geq (1 - \delta)p_{m'} m + \delta U_{m'}.
\]
Complete Information

Same program, without incentive constraints.
Complete Information

Same program, without incentive constraints.

If initial utility is freely chosen, \((p_h, p_l) = (1, 0)\) and \(U =qh\).
Complete Information

Same program, without incentive constraints.

If initial utility is freely chosen, \((p_h, p_l) = (1, 0)\) and \(U = qh\).

Instead, taking \(U\) as given, stationary policy.

\[
\begin{cases}
 p_h = \frac{U}{qh}, & p_l = 0 \quad \text{if } U \in [0, qh], \\
 p_h = 1, & p_l = \frac{U - qh}{(1 - q)l} \quad \text{if } U \in [qh, \mu].
\end{cases}
\]

\[
\bar{W}(U) = \begin{cases}
(1 - \frac{c}{h}) U & \text{if } U \in [0, qh], \\
(1 - \frac{c}{l}) U + cq \left(\frac{h}{l} - 1\right) & \text{if } U \in (qh, \mu].
\end{cases}
\]
Figure: Complete information payoff, $(\delta, l, h, q, c) = (.95, .4, .6, .6, .5)$
Second-Best: Two Observations

1. Efficient allocation as long as possible.

 Caveat: efficient allocation infeasible if \(U, \mu - U \) “too small.”
Second-Best: Two Observations

1. Efficient allocation as long as possible.

 Caveat: efficient allocation infeasible if $U, \mu - U$ “too small.”

2. One IC always binds: l pretending h.
Second-Best: Two Observations

1. Efficient allocation as long as possible.

 Caveat: efficient allocation infeasible if $U, \mu - U$ "too small."

2. One IC always binds: l pretending h.

 Differs from standard adverse selection model where h mimicks l.
Dynamics, I

Two equations, IC-1 and PK, and two unknowns, U_h, U_I:
Dynamics, I

Two equations, IC-I and PK, and two unknowns, U_h, U_l:

Both types are willing to send $m = h$, so:

$$U = (1 - \delta)\mu + \delta U_h.$$
Two equations, IC-I and PK, and two unknowns, U_h, U_l:

Both types are willing to send $m = h$, so:

$$U = (1 - \delta)\mu + \delta U_h.$$

Hence, for all U,

$$U_h < U.$$
Dynamics, I

Two equations, IC-\(l\) and PK, and two unknowns, \(U_h, U_l\):

Both types are willing to send \(m = h\), so:

\[
U = (1 - \delta)\mu + \delta U_h.
\]

Hence, for all \(U\),

\[
U_h < U.
\]

The high type has \((1 - \delta)(h - l)\) excess utility over sending \(m = 1\):

\[
U = (1 - \delta)q(h - l) + \delta U_l.
\]
Dynamics, I

Two equations, IC-1 and PK, and two unknowns, \(U_h, U_l \):

Both types are willing to send \(m = h \), so:

\[
U = (1 - \delta) \mu + \delta U_h.
\]

Hence, for all \(U \),

\[
U_h < U.
\]

The high type has \((1 - \delta)(h - l)\) excess utility over sending \(m = 1 \):

\[
U = (1 - \delta) q(h - l) + \delta U_l.
\]

Hence: \(U_l < U \) iff \(U < q(h - l) =: \underline{U} \): Utility is trapped below \(\underline{U} \).
Region $[0, \mathcal{U})$: transient, leading to $\{0\}$.
Dynamics, II

Region $[0, U)$: transient, leading to $\{0\}$.

Region $[U, 1)$: transient, leading to either $[0, U)$ or $\{\mu\}$.
Region $[0, U)$: transient, leading to $\{0\}$.

Region $[U, 1)$: transient, leading to either $[0, U)$ or $\{\mu\}$.

Drift? Given by PK!

$$U = (1 - \delta)qh + \delta \left(qU_h + (1 - q)U_l \right).$$

$$E[U']$$
Dynamics, II

Region $[0, U)$: transient, leading to $\{0\}$.

Region $[U, 1)$: transient, leading to either $[0, U)$ or $\{\mu\}$.

Drift? Given by PK!

$$U = (1 - \delta)qh + \delta\left(qU_h + (1 - q)U_l\right).$$

U drifts up/down according to $U \geq qh$.
Formally

An optimal policy is:

\[p_h(U) = \min \left\{ 1, \frac{U}{(1 - \delta)\mu} \right\}, \quad p_l(U) = \max \left\{ 0, 1 - \frac{\mu - U}{(1 - \delta)l} \right\}. \]
Formally

An optimal policy is:

\[p_h(U) = \min \left\{ 1, \frac{U}{(1 - \delta)\mu} \right\}, \quad p_l(U) = \max \left\{ 0, 1 - \frac{\mu - U}{(1 - \delta)l} \right\}. \]

Payoff \(W \) is:
- linear and equal to \(\bar{W} \) for \(U \leq U \);
- strictly concave and below \(\bar{W} \) for \(U \in (U, \mu) \);
Formally

An optimal policy is:

\[p_h(U) = \min \left\{ 1, \frac{U}{(1 - \delta)\mu} \right\}, \quad p_l(U) = \max \left\{ 0, 1 - \frac{\mu - U}{(1 - \delta)l} \right\}. \]

Payoff \(W \) is:

- linear and equal to \(\bar{W} \) for \(U \leq \bar{U} \);
- strictly concave and below \(\bar{W} \) for \(U \in (\bar{U}, \mu) \);
- \(C^1 \) over \((0, \mu)\), with \(\lim_{U \uparrow \mu} W'(U) = \lim_{U \uparrow \mu} \bar{W}'(U) \).
An optimal policy is:

$$p_h(U) = \min \left\{ 1, \frac{U}{(1 - \delta)\mu} \right\}, \quad p_l(U) = \max \left\{ 0, 1 - \frac{\mu - U}{(1 - \delta)I} \right\}. $$

Payoff W is:

- linear and equal to \bar{W} for $U \leq \bar{U}$;
- strictly concave and below \bar{W} for $U \in (\bar{U}, \mu)$;
- C^1 over $(0, \mu)$, with $\lim_{U\uparrow\mu} W'(U) = \lim_{U\uparrow\mu} \bar{W}'(U)$.

Optimal choice of $U_0 = U^*$ solves $W'(U) = 0$.

\[19 / 1\]
Second-Best

Figure: Payoff as a function of utility, \((\delta, l, h, q, c) = (0.95, 0.4, 0.6, 0.6, 0.5)\)
A Martingale

\[W(U) = (1 - \delta) q(h - c) \]

\[+ \delta \left(q W \left(\frac{U - (1 - \delta) \mu}{\delta} \right) + (1 - q) W \left(\frac{U - (1 - \delta) U}{\delta} \right) \right), \]

and so by differentiation,

\[W'(U_n) = \mathbb{E}[W'(U_{n+1})]. \]

Hence, probability \(\alpha \) of absorption at \(U = 0 \) solves

\[\frac{W'(0)}{h} \alpha + \frac{W'(\mu)}{l} (1 - \alpha) = 0, \]

or

\[\frac{\alpha}{1 - \alpha} = \frac{h/l}{(h - c)/(c - l)}. \]
Implementation

Let $f := (1 - \delta)U$, and $g := (1 - \delta)\mu - f$.
Implementation

Let $f := (1 - \delta)U$, and $g := (1 - \delta)\mu - f$.

Give the agent a “budget” of U^*.
Implementation

Let $f := (1 - \delta)U$, and $g := (1 - \delta)\mu - f$.

Give the agent a “budget” of U^*.

In each period:

1. Charge him a fixed fee of f;
Implementation

Let $f := (1 - \delta)U$, and $g := (1 - \delta)\mu - f$.

Give the agent a “budget” of U^*.

In each period:

1. Charge him a fixed fee of f;
2. If he asks for the item, charge g in addition;
Implementation

Let $f := (1 - \delta)U$, and $g := (1 - \delta)\mu - f$.

Give the agent a “budget” of U^*.

In each period:

1. Charge him a fixed fee of f;
2. If he asks for the item, charge g in addition;
3. Give him a yield at rate $r = \frac{1-\delta}{\delta}$.
A Comparison with Token Mechanisms as in Jackson and Sonnenschein (2007)

1. Is the agent a prophet or a forecaster? (Is the problem static or dynamic?)
A Comparison with Token Mechanisms as in Jackson and Sonnenschein (2007)

1. Is the agent a prophet or a forecaster? (Is the problem static or dynamic?)

2. Are token mechanisms optimal?
A Comparison with Token Mechanisms as in Jackson and Sonnenschein (2007)

A prophetic agent (static) A forecasting agent (dynamic)
A Comparison with Token Mechanisms as in Jackson and Sonnenschein (2007)

A prophetic agent (static) A forecasting agent (dynamic)

Token mechanisms
A Comparison with Token Mechanisms as in Jackson and Sonnenschein (2007)

<table>
<thead>
<tr>
<th>A prophetic agent (static)</th>
<th>A forecasting agent (dynamic)</th>
</tr>
</thead>
</table>

Asymptotically optimal as $T \to \infty$ (or $\delta \to 1$).

Token mechanisms
A Comparison with Token Mechanisms as in Jackson and Sonnenschein (2007)

A prophetic agent (static) A forecasting agent (dynamic)

Token mechanisms

Asymptotically optimal as $T \to \infty$ (or $\delta \to 1$).
The difference in information plays no role.
A Comparison with Token Mechanisms as in Jackson and Sonnenschein (2007)

A prophetic agent (static) A forecasting agent (dynamic)

Token mechanisms

Asymptotically optimal as $T \to \infty$ (or $\delta \to 1$).
The difference in information plays no role.
The loss is of the order $O(1/\sqrt{T})$.
A Comparison with Token Mechanisms as in Jackson and Sonnenschein (2007)

The question of how the two mechanisms compare is ambiguous a priori.
A Comparison with Token Mechanisms as in Jackson and Sonnenschein (2007)

The question of how the two mechanisms compare is ambiguous a priori.

Lemma
It holds that

$$|\mathcal{W}(U^*) - q(h - c)| = \mathcal{O}(1 - \delta).$$

In the case of a prophetic agent, the average loss converges to zero at rate $\mathcal{O}(\sqrt{1 - \delta})$.
A Comparison with Token Mechanisms as in Jackson and Sonnenschein (2007)

<table>
<thead>
<tr>
<th>Token mechanisms</th>
<th>A prophetic agent (static)</th>
<th>A forecasting agent (dynamic)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Asymptotically optimal as $T \to \infty$ (or $\delta \to 1$).</td>
<td>The difference in information plays no role.</td>
</tr>
<tr>
<td></td>
<td>The loss is of the order $O(1/\sqrt{T})$.</td>
<td></td>
</tr>
</tbody>
</table>
A Comparison with Token Mechanisms as in Jackson and Sonnenschein (2007)

<table>
<thead>
<tr>
<th>Mechanisms</th>
<th>A prophetic agent (static)</th>
<th>A forecasting agent (dynamic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Token mechanisms</td>
<td>Asymptotically optimal as $T \to \infty$ (or $\delta \to 1$).</td>
<td>The difference in information plays no role.</td>
</tr>
<tr>
<td></td>
<td>The loss is of the order $O(1/\sqrt{T})$.</td>
<td></td>
</tr>
<tr>
<td>Optimal mechanisms</td>
<td>$O(\sqrt{1-\delta})$</td>
<td>$O(1 - \delta)$</td>
</tr>
</tbody>
</table>
Markovian Values
Values follow a Markov chain, with:

\[P[v_{n+1} = h \mid v_n = h] = 1 - \rho_h, \quad P[v_{n+1} = l \mid v_n = l] = 1 - \rho_l. \]

Assume \(1 - \rho_h > \rho_l \).
Set-Up

Values follow a Markov chain, with:

\[
P[v_{n+1} = h \mid v_n = h] = 1 - \rho_h, \quad P[v_{n+1} = l \mid v_n = l] = 1 - \rho_l.
\]

Assume \(1 - \rho_h > \rho_l\).

All else: the same.
Reduction to Dynamic Programming, I

Revelation Principle still applies.
Reduction to Dynamic Programming, I

Revelation Principle still applies.

But promised utility is no longer a valid state variable. What is?
Reduction to Dynamic Programming, I

Revelation Principle still applies.

But promised utility is no longer a valid state variable. What is?

State variables:

1. A pair of promised interim utilities: U_h, U_l.

2. The belief of the principal, $\phi = P[v = h] \in [0, 1]$.
Reduction to Dynamic Programming, I

Revelation Principle still applies.

But promised utility is no longer a valid state variable. What is?

State variables:

1. A pair of promised interim utilities: U_h, U_l.

2. The belief of the principal, $\phi = P[\nu = h] \in [0, 1]$.

Choice variables, given (ϕ, U_h, U_l):

1. Supply decision: $p = (p_h, p_l) \in [0, 1]^2$.
Reduction to Dynamic Programming, I

Revelation Principle still applies.

But promised utility is no longer a valid state variable. What is?

State variables:

1. A pair of promised *interim* utilities: U_h, U_l.

2. The belief of the principal, $\phi = P[\nu = h] \in [0, 1]$.

Choice variables, **given** (ϕ, U_h, U_l):

1. Supply decision: $p = (p_h, p_l) \in [0, 1]^2$.

2. Promised pair tomorrow: for $m = h, l$: $(U_h(m), U_l(m)) \in \mathbb{R}^2$.
The optimality equation becomes

\[
W(U_h, U_l, \phi) = \sup \left\{ \phi \left((1 - \delta)p_h (h - c) + \delta W(U_h(h), U_l(h), 1 - \rho_h) \right) \\
+ (1 - \phi) \left((1 - \delta)p_l (l - c) + \delta W(U_h(l), U_l(l), \rho_l) \right) \right\},
\]

over \((p_h, p_l, U_h(h), U_l(h), U_h(l), U_l(l))\) s.t.

\[
U_h = (1 - \delta)p_h h + \delta (1 - \rho_h) U_h(h) + \delta \rho_h U_l(h) \\
\geq (1 - \delta)p_l h + \delta (1 - \rho_h) U_h(l) + \delta \rho_h U_l(l),
\]

and similarly for \(U_l\).
Incentive Feasibility

Let us ignore optimality and focus on incentives.
Incentive Feasibility

Let us ignore optimality and focus on incentives.

In the i.i.d. case, all \(U \in [0, \mu] \) are achievable by some IC-policy.
Incentive Feasibility

Let us ignore optimality and focus on incentives.

In the i.i.d. case, all $U \in [0, \mu]$ are achievable by some IC-policy.

What are the IC-feasible pairs (U_h, U_l)? (e.g., $(0, \mu)$ is not.)
Incentive Feasibility

Let us ignore optimality and focus on incentives.

In the i.i.d. case, all $U \in [0, \mu]$ are achievable by some IC-policy.

What are the IC-feasible pairs (U_h, U_l)? (e.g., $(0, \mu)$ is not.)

1. Ignore reports; produce for first N' periods ("frontloading");
Incentive Feasibility

Let us ignore optimality and focus on incentives.

In the i.i.d. case, all $U \in [0, \mu]$ are achievable by some IC-policy.

What are the IC-feasible pairs (U_h, U_l)? (e.g., $(0, \mu)$ is not.)

1. Ignore reports; produce for first N' periods (“frontloading”);
2. Ignore reports; start producing after period N (“backloading”).
Incentive Feasibility

Let us ignore optimality and focus on incentives.

In the i.i.d. case, all $U \in [0, \mu]$ are achievable by some IC-policy.

What are the IC-feasible pairs (U_h, U_l)? (e.g., $(0, \mu)$ is not.)

1. Ignore reports; produce for first N' periods (“frontloading”);
2. Ignore reports; start producing after period N (“backloading”).

Given the same U_h, the values of U_l are not the same under front- and backloading. U_l is higher under backloading.
Incentive Feasibility

Let us ignore optimality and focus on incentives.

In the i.i.d. case, all $U \in [0, \mu]$ are achievable by some IC-policy.

What are the IC-feasible pairs (U_h, U_l)? (e.g., $(0, \mu)$ is not.)

1. Ignore reports; produce for first N' periods (“frontloading”);
2. Ignore reports; start producing after period N (“backloading”).

Given the same U_h, the values of U_l are not the same under front- and backloading. U_l is higher under backloading.

Front- and backloading define the boundaries of the IC-feasible set.
Figure: The set V for parameters $(\delta, \rho_h, \rho_l, l, h) = (9/10, 1/3, 1/4, 1/4, 1)$.
Figure: The set V for parameters $(\delta, \rho_h, \rho_l, l, h) = (9/10, 1/3, 1/4, 1/4, 1)$.
Optimal Policy

Recall the policy is defined for all \((U_h, U_l) \in V, \phi \in \{\rho_l, 1 - \rho_h\}\).
Recall the policy is defined for all \((U_h, U_l) \in V, \phi \in \{\rho_l, 1 - \rho_h\}\). The optimal policy is “simple” and independent of beliefs.
Recall the policy is defined for all \((U_h, U_l) \in V, \phi \in \{\rho_l, 1 - \rho_h\}\).

The optimal policy is “simple” and independent of beliefs.

I will focus on the reachable subset of states given the optimal \(U^*\).
The Lower Boundary

U^* lies on the lower boundary (frontloading policies).
The Lower Boundary

\(U^* \) lies on the lower boundary (frontloading policies).

This does not imply that frontloading occurs:

Any policy s.t. IC-1 binds in every period, and s.t. \(p_h = 1 \) (“whenever possible”) yields utilities on this boundary.
The Lower Boundary

U^* lies on the lower boundary (frontloading policies).

This does not imply that frontloading occurs:

Any policy s.t. IC-I binds in every period, and s.t. $p_h = 1$ ("whenever possible") yields utilities on this boundary.

They differ in terms of the principal’s payoff, and utility dynamics.
Choose efficient allocation

\[p_h = \min \left\{ 1, \frac{U_h}{(1 - \delta) h} \right\}, \quad p_l = \max \left\{ 0, 1 - \frac{\mu_l - U_l}{(1 - \delta) l} \right\}, \]

and continuation utilities on the lower boundary s.t. IC-l binds.
It holds that $U(h) \leq U$.
Dynamics

It holds that \(U(h) \leq U \).

\(U(l) \leq U \) if and only if \(U \) is low enough.
Dynamics

It holds that $U(h) \leq U$.

$U(l) \leq U$ if and only if U is low enough.

U is drifting up iff

$$\frac{\rho_h}{\rho_h + \rho_l} U_l + \frac{\rho_l}{\rho_h + \rho_l} U_h \geq \frac{\rho_l}{\rho_h + \rho_l} h.$$

(“Long-run efficient utility below current long-run promise.”)
Dynamics

It holds that $U(h) \leq U$.

$U(l) \leq U$ if and only if U is low enough.

U is drifting up iff

$$\frac{\rho_h}{\rho_h + \rho_l} U_l + \frac{\rho_l}{\rho_h + \rho_l} U_h \geq \frac{\rho_l}{\rho_h + \rho_l} h.$$

(“Long-run efficient utility below current long-run promise.”)

Utility is eventually absorbed at $U \in \{0, \mu\}$. We know of no formula for absorption probability.
Implementation

The obvious “budget” unit is: \# of consecutive periods the agent can claim the unit, no questions asked: \((B_n, \gamma_n) \in \mathbf{N} \times [0, 1]\).
Implementation

The obvious “budget” unit is: # of consecutive periods the agent can claim the unit, no questions asked: \((B_n, \gamma_n) \in \mathbb{N} \times [0, 1]\).

Not asking for the unit leads to the revised promise

\[
\frac{U_l(B_n, \gamma_n)}{\delta} = E_I \left[U_{v_{n+1}}(B_{n+1}, \gamma_{n+1}) \right].
\]

where

\[
E_I \left[U_{v_{n+1}}(B_{n+1}, \gamma_{n+1}) \right] = (1 - \rho_l)U_l(B_{n+1}, \gamma_{n+1}) + \rho_l U_h(B_{n+1}, \gamma_{n+1})
\]

is the expected utility from tomorrow’s \((B_{n+1}, \gamma_{n+1})\) given \(I\) today.
Implementation

The obvious “budget” unit is: \# of consecutive periods the agent can claim the unit, no questions asked: \((B_n, \gamma_n) \in \mathbb{N} \times [0, 1]\).

Not asking for the unit leads to the revised promise

\[
\frac{U_I(B_n, \gamma_n)}{\delta} = E_I \left[U_{v_{n+1}}(B_{n+1}, \gamma_{n+1}) \right].
\]

where

\[
E_I \left[U_{v_{n+1}}(B_{n+1}, \gamma_{n+1}) \right] = (1 - \rho_I)U_I(B_{n+1}, \gamma_{n+1}) + \rho_I U_H(B_{n+1}, \gamma_{n+1})
\]

is the expected utility from tomorrow’s \((B_{n+1}, \gamma_{n+1})\) given \(I\) today.

Asking for it leads to a payment \((1 - \delta)I\), as before:

\[
\frac{U_I(B_n, \gamma_n) - (1 - \delta)I}{\delta} = E_I \left[U_{v_{n+1}}(B_{n+1}, \gamma_{n+1}) \right].
\]
Continuous-Time Limit

Lack of smoothness prevents easy comparative statics.
Continuous-Time Limit

Lack of smoothness prevents easy comparative statics.

Let \(\rho_h \approx \lambda_h \Delta, \rho_l \approx \lambda_l \Delta, \) \(r \approx (1 - \delta)\Delta \) and take \(\Delta \to 0. \)
Continuous-Time Limit

Lack of smoothness prevents easy comparative statics.

Let $\rho_h \cong \lambda_h \Delta$, $\rho_l \cong \lambda_l \Delta$, $r \cong (1 - \delta)\Delta$ and take $\Delta \to 0$.

Flow values evolve according to a two-state Markov chain with parameters λ_l, λ_h.
Continuous-Time Limit

Lack of smoothness prevents easy comparative statics.

Let $\rho_h \cong \lambda_h \Delta$, $\rho_l \cong \lambda_l \Delta$, $r \cong (1 - \delta)\Delta$ and take $\Delta \to 0$.

Flow values evolve according to a two-state Markov chain with parameters λ_l, λ_h.

Two simplifications:

1. No “kinks:” lower boundary parameterized by $\tau \in \mathbb{R}_+$;
Continuous-Time Limit

Lack of smoothness prevents easy comparative statics.

Let $\rho_h \cong \lambda_h \Delta$, $\rho_I \cong \lambda_I \Delta$, $r \cong (1 - \delta) \Delta$ and take $\Delta \to 0$.

Flow values evolve according to a two-state Markov chain with parameters λ_I, λ_h.

Two simplifications:

1. No “kinks:” lower boundary parameterized by $\tau \in \mathbb{R}_+$;
2. Degenerate beliefs: $\phi \in \{0, 1\}$.
Figure: Incentive-feasible set for \((r, \lambda_h, \lambda_l, l, h) = (1, 10/4, 1/4, 1/4, 1)\)
Payoff Dynamics

Payoffs (conditional on the point belief) satisfy the coupled ODE:

\[(r + \lambda_h)W_h(\tau) = r(h - c) + \lambda_h W_l(\tau) - W_h'(\tau),\]

and

\[(r + \lambda_l)W_l(\tau) = \lambda_l W_h(\tau) + \frac{g(\tau)}{\mu - q(h - l)e^{-(\lambda_h + \lambda_l)\tau}} W_l'(\tau),\]

where \(g(\tau) := q(h - l)e^{-(\lambda_h + \lambda_l)\tau} + le^{r\tau} - \mu\), and \(W(0) = 0\).
Proposition

The value function of the principal is given by

\[
\begin{cases}
\tilde{W}_1(\tau) & \\
\tilde{W}_1(\tau) - w_0(\tau) \frac{h-l}{h_l} c r \mu \left(\int_{\tau}^{\tilde{\tau}} e^{\int_{\tau}^{s} f(s) ds} \right) & \\
\tilde{W}_1(\tau) - w_0(\tau) \frac{h-l}{h_l} c \left(1 + r \mu \left(\int_{\tau}^{\infty} e^{\int_{\tau}^{s} f(s) ds} \right) \right) &
\end{cases}
\]

\[
\begin{cases}
\text{if } \tau \in [0, \hat{\tau}), \\
\text{if } \tau \in [\hat{\tau}, \tau_0), \\
\text{if } \tau \geq \tau_0,
\end{cases}
\]

where \(\tilde{W}_1(\tau) := (1 - e^{-r\tau})(1 - c/h)\mu, w_0(\tau) := \mu e^{-r\tau} - (1 - q)l, \)

\[f(\tau) := r - (\lambda_h + \lambda_l) \frac{w_0(\tau)}{g(\tau)} e^{r\tau},\]

and \(\tau_0 \) is the positive root of \(w_0 \), and \(\hat{\tau} \) of \(g \).
Figure: Payoff; \((\lambda_l, \lambda_h, r, l, h, c) = (p/4, 10p/4, 1, 1/4, 1, 2/5), \ p = 1, 1/4\)
Persistence, Convergence

Lemma
The value $W(\tau)$ decreases pointwise in persistence $1/p$, where $\lambda_h = p\bar{\lambda}_h$, $\lambda_l = p\bar{\lambda}_l$, for some fixed $\bar{\lambda}_h$, $\bar{\lambda}_l$.
Persistence, Convergence

Lemma
The value $W(\tau)$ decreases pointwise in persistence $1/p$, where $\lambda_h = p\lambda_h$, $\lambda_l = p\lambda_l$, for some fixed λ_h, λ_l.

Lemma
It holds that
\[
|\max_{\tau} W(\tau) - q(h - c)| = O(r).
\]
A Comparison with the Transfer Case

With transfers, efficiency is trivial (the agent pays c for the unit).
A Comparison with the Transfer Case

With transfers, efficiency is trivial (the agent pays c for the unit). Revenue maximization (Battaglini, 2005).

1. Inefficiency decreases over time.
2. Efficiency achieved along all histories, asymptotically.
A Comparison with the Transfer Case

With transfers, efficiency is trivial (the agent pays c for the unit).

Revenue maximization (Battaglini, 2005).

1. Inefficiency decreases over time.
2. Efficiency achieved along all histories, asymptotically.

Logic is different:

1. With transfers, IC-h becomes the problematic constraint (because transfers are used to extract surplus).
A Comparison with the Transfer Case

With transfers, efficiency is trivial (the agent pays c for the unit).

Revenue maximization (Battaglini, 2005).

1. Inefficiency decreases over time.
2. Efficiency achieved along all histories, asymptotically.

Logic is different:

1. With transfers, IC-h becomes the problematic constraint (because transfers are used to extract surplus).
2. Information rents in period n can be extracted in period 0 via higher prices (as the expected rent is insensitive to the initial value when n is large).
A Comparison with the Transfer Case

Transfers have two benefits:
A Comparison with the Transfer Case

Transfers have two benefits:

1. Promises made in period n can be cleared then.
A Comparison with the Transfer Case

Transfers have two benefits:

1. Promises made in period \(n \) can be cleared then.

2. Clearing earlier reduces cost of future information rents.
All That is Missing…

1. Statistical signals.
All That is Missing...

1. Statistical signals.

2. More than one agent (allocation problems).
All That is Missing…

1. Statistical signals.

2. More than one agent (allocation problems).

3. More than one good (matching problems).
Thank You!
Figure: The set $V, \overline{V}, (\delta, \rho_h, \rho_l, l, h) = (9/10, 1/3, 1/4, 1/4, 1)$
Figure: Optimal policy for \((\delta, \rho_h, \rho_l, l, h) = (9/10, 1/3, 1/4, 1/4, 1)\)
Optimal Policy

Let P_t, P_b denote the top and bottom boundary of V.
Let V_t, V_b denote the regions of V above (below) some polygonal chain P (omitted here).
Optimal Policy

Let P_t, P_b denote the top and bottom boundary of V.

Let V_t, V_b denote the regions of V above (below) some polygonal chain P (omitted here).

For all $U = (U_h, U_l) \in V$, set

$$p_l = \max \left\{ 0, 1 - \frac{\mu_l - U_l}{(1 - \delta)l} \right\}, \quad p_h = \min \left\{ 1, \frac{U_h}{(1 - \delta)h} \right\},$$

and

$$U(h) \in P_b, \quad U(l) \in \begin{cases} P_b & \text{if } U \in V_b, \\ P_t & \text{if } U \in P_t. \end{cases}$$

Furthermore, if $U \in V_t$, $U(l)$ is chosen so that IC-h binds.
General i.i.d. Distributions

What remains the same:

- Convergence to either 0 or \(\mu \) (so inefficiency is pushed back).
- Martingale property of \(W' \).
- Slopes match \(\bar{W} \) at the end points.

What changes:

- Strict concavity on all \([0, \mu]\), \(W < \bar{W} \) on \((0, \mu)\).
- Policy no longer efficient as long as possible; not even cut-off.
- \((F(v) = v^\alpha, \alpha \geq 1)\):
 - \(U \geq U^{**} \): \(\exists 0 < v_1 < v_2 < 1 \) such that
 \[
 p(v) = \begin{cases}
 0 & \text{if } v \leq v_1, \\
 1 & \text{if } v \geq v_2,
 \end{cases}
 \]
 and continuously increasing on \([v_1, v_2]\).
 - \(U < U^{**} \): same, excepts \(v_2 = 1 \).
Complete Information

Efficient policy yields v_m^*:

$$\begin{align*}
v_h^* &= (1 - \delta)h + \delta(1 - \rho_h)v_h^* + \delta \rho_h v_l^*, \\
v_l^* &= \delta(1 - \rho_l)v_l^* + \delta \rho_l v_h^*.
\end{align*}$$

Policy and payoff are piecewise linear.

Increasing in each U_m iff $U_m \leq v_m^*$.
Figure: Impact of persistence
Figure: Impact of persistence
Figure: Impact of persistence