Sequential Equilibrium in Multi-Stage Games with Infinite Sets of Types and Actions

By

Roger B. Myerson
and
Philip J. Reny

Department of Economics
University of Chicago

Paper can be found at https://sites.google.com/site/philipjreny/home/research
Dynamic multi-stage game Γ

• Players move simultaneously at each date $k=1,\ldots,K$.

• Date k: Nature chooses $\theta_k \in \Theta_k$ according to $p_k(\cdot|\theta_{<k},a_{<k})$, then each player i chooses simultaneously from his A_{ik}.

• $\Theta = \times_k \Theta_k$; $A = \times_i A_{ik}$; $\Theta \times A = \{ \text{outcomes of the game} \}$.

• $T = \times_i T_{ik}$; $T_{ik} = \{ i \text{'s types at date } k \}$. (topologized, and with a countable basis)

• $\tau_{ik}: \Theta_{\leq k} \times A_{<k} \rightarrow T_{ik}$ specifies i’s (information) type t_{ik} at date k.

• $u_i: \Theta \times A \rightarrow \mathbb{R}$ is player i’s bounded vNM utility function.

• A strategy for i at date k is a function $s_{ik}: T_{ik} \rightarrow \Delta(A_{ik})$.

• A strategy for i is $s_i = (s_{i1},\ldots,s_{iK}) \in S_i = \times_k S_{ik}$; $S = \times_i S_i$. (r.c.p, 23)
An existence problem/strategic entanglement (Harris-Reyn-Robson 1995)

Example 1. Date 1: Player 1 chooses a_1 from $[-1,1]$, player 2 chooses from \{L,R\}.
Date 2: Players 3 and 4 observe the date 1 choices and each choose from \{L,R\}.

- For $i = 3,4$, player i’s payoff is $-a_1$ if i chooses L and a_1 if i chooses R.

- Player 2’s payoff depends on whether she matches 3’s choice.
 If 2 chooses L then she gets 1 if player 3 chooses L but -1 if 3 chooses R; and
 If 2 chooses R then she gets 2 if player 3 chooses R but -2 if 3 chooses L.

- Player 1’s payoff is the sum of three terms:
 (First term) If 3 and 4 match he gets 10, if they mismatch he gets 0;
 plus (second term) if 2 and 3 match he gets $-|a_1|$, if they mismatch he gets $|a_1|$;
 plus (third term) he gets $-|a_1|^2$.

- There is no SPE. But for any $\varepsilon \in (0,1)$ there are ε-SPE. For example, player 1 chooses $\pm \varepsilon$ with probability $\frac{1}{2}$ each, player 2 chooses L and R each with probability $\frac{1}{2}$, and players $i = 3,4$ choose L if $a_1 \leq 0$ and choose R if $a_1 > 0$.

- The weak*-limit distribution over outcomes is $a_1 = 0$ and $a_i = 0.5[L] + 0.5[R]$ for all $i \in \{2,3,4\}$. But in this limit, 3’s and 4’s actions are perfectly correlated independently of 1’s and 2’s. So no strategy profile can produce this distribution and we may say that players 3 and 4 are strategically entangled in the limit.
Problems of spurious signaling in naïve finite approximations

Example 2. Nature: $\theta \in \{1,2\}$; $p(\theta) = \theta/3$.
Player 1: $t_1 = \emptyset$, $a_1 \in [0,1]$. Player 2: $t_2 = (a_1)^\theta$, $a_2 \in \{1,2\}$.

<table>
<thead>
<tr>
<th></th>
<th>$a_2 = 1$</th>
<th>$a_2 = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[1/3]: \theta = 1$</td>
<td>1,1</td>
<td>0,0</td>
</tr>
<tr>
<td>$[2/3]: \theta = 2$</td>
<td>1,0</td>
<td>0,1</td>
</tr>
</tbody>
</table>

1’s payoff is zero in any Nash equilibrium.

But if player 1 is restricted to any finite subset, $F \not\subseteq \{0,1\}$, of his action space $[0,1]$, he must obtain $u_1 \geq 1/3$ in any SPE since when t_2 is the highest action in F less than 1, player 2 must respond with $a_2 = 1$ since the state must be $\theta = 1$.
Problems of requiring sequential rationality tests with positive probability in all events

Example 4. (BoS) **Date 1**: Nature chooses $\theta \sim U[0,1]$ and player 1 chooses $a_1 = (\delta_1, \eta_1) \in \{L, R\} \times [0,1]$. **Date 2**: Player 2 observes $t_2 = \theta$ if $\delta_1 = L$ and $t_2 = \eta_1$ if $\delta_1 = R$, and chooses $a_2 \in \{L, R\}$.

<table>
<thead>
<tr>
<th></th>
<th>$a_2 = L$</th>
<th>$a_2 = R$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta_1 = L$</td>
<td>1,2</td>
<td>0,0</td>
</tr>
<tr>
<td>$\delta_1 = R$</td>
<td>0,0</td>
<td>2,1</td>
</tr>
</tbody>
</table>

All BoS equilibria seem reasonable.

- but if for “consistency of beliefs,” any observed event must be given positive probability when possible,…

- then, e.g., $t_2 = \pi/4$ will imply $a_2 = R$ since $t_2 = \pi/4$ has positive probability only when $a_1 = (\delta_1, \eta_1) = (R, \pi/7)$.

- but then all equilibria are such that $(\delta_1, a_2) = (R, R)$.
Example 5. Nature chooses $\theta = (\omega_1, \omega_2)$, with $\omega_1, \omega_2 \sim U[-1,3]$.

Player 1 observes $t_1 = \omega_1$ and chooses $a_1 \in \{-1,1\}$.

Player 2 observes $t_2 = a_1$ and chooses $a_2 \in \{-1,1\}$.

Payoffs: $u_1(\omega_1, \omega_2, a_1, a_2) = a_1 a_2$; $u_2(\omega_1, \omega_2, a_1, a_2) = \omega_2 a_2$.

- Since no player observes ω_2 and $E(\omega_2) > 0$, player 2 should always choose $a_2 = 1$, regardless of the action of player 1 that she observes.

- So player 1 should choose $a_1 = 1$ regardless of the ω_1 that he observes. The only sensible equilibrium payoffs are $u_1 = u_2 = 1$.

- But consider $s_1(\omega_1) = -1$ iff $\omega_1 \neq -1$ and $s_2(a_1) = -a_1$. This yields the payoff vector $(u_1, u_2) = (-1,1)$

- These strategies are supported by perturbing nature to give small positive probability to the event $\{(\omega_1, \omega_2) = (-1,-1)\}$.
Observable open sets and neighborhood bases

- Let $T^*_ik = \{\text{open } C \subseteq T^*_ik : \exists s \in S \text{ s.t. } \Pr(C|s) > 0\}$; \textit{observable} open sets.

- Assume for today’s talk that every open $C \subseteq T^*_ik$ is observable.

- Let $T^* = \bigcup_{ik} T^*_ik$ (disjoint union) be the collection of (observable) open sets.

- $\mathcal{B} \subseteq T^*$ is a \textit{neighborhood basis for the players’ types} iff $\forall i,k$

 $T^*_ik \in \mathcal{B}$, and, $\forall t^*_ik \in T^*_ik$, $\forall \text{open } C \ni t^*_ik$, $\exists B \in \mathcal{B}$ s.t. $t^*_ik \in B \subseteq C$.
For any $\varepsilon > 0$, and for any $\mathcal{F} \subseteq \mathcal{T}^*$, say that $s \in S$ is an $(\varepsilon, \mathcal{F})$-sequential equilibrium of Γ iff for all i and k, and for every $C \in \mathcal{F} \cap \mathcal{T}_{ik}^*$,

1. $\Pr(C|s) > 0$, and
2. $U_i(r_i, s_{-i}|C) \leq U_i(s|C) + \varepsilon$, for any date-$k$ continuation r_i of s_i.

Let \mathcal{Y} be the set of measurable outcome events $Y \subseteq \Theta \times A$.

A mapping $\mu : \mathcal{Y} \times \mathcal{B} \to [0,1]$ is an open sequential equilibrium of Γ iff \mathcal{B} is a neighborhood basis for the players’ types, and, $\forall \varepsilon > 0$, \forall finite $\mathcal{F} \subseteq \mathcal{B}$, and \forall finite $\mathcal{G} \subseteq \mathcal{Y}$, $\exists (\varepsilon, \mathcal{F})$-sequential equilibrium, s, s.t.

$$|\Pr(Y|C,s) - \mu(Y|C)| < \varepsilon, \forall (Y, C) \in \mathcal{G} \times \mathcal{F}.$$
Subgame perfection can fail if payoffs are discontinuous

Example 6. 1 chooses $a_1 \in [0,1]$; 2 sees $t_2 = a_1$ and chooses $a_2 \in [0,1]$.

Payoffs: $u_1(a_1,a_2) = u_2(a_1,a_2) = a_2$, if $(a_1,a_2) \neq (1/2, 1/2)$,

$= 2$, if $(a_1,a_2) = (1/2, 1/2)$

- Unique SPE: $a_1 = 1/2$; $s_2(1/2) = 1/2$ and $s_2(a_1) = 1$ if $a_1 \neq 1/2$. So, $u_1 = u_2 = 2$.

- But, $a_1 \sim U[0,1]$ and $s_2(a_1) = 1 \ \forall a_1$ yields an open sequential equilibrium with payoffs $u_1 = u_2 = 1$.

- This failure of subgame perfection occurs because 2’s sequential rationality is not tested at the exact event \{a_1 = 1/2\}.

- This problem can arise even with continuous utilities when the behavior of future players is discontinuous. To guarantee subgame perfection, one needs a stronger solution concept, requiring sequential rationality at more than just open sets.
Regular projective games
Let $\Gamma=(\Theta,N,K,A,T,p,\tau,u)$ be a multi-stage game.
Regular projective games

Let \(\Gamma = (\Theta, N, K, A, T, p, \tau, u) \) be a multi-stage game. \(\Gamma \) is a **regular projective game** iff there is a finite index set \(J \) and sets \(\Theta_{kj} \) and \(A_{ikj} \) such that for every player \(i \) and date \(k \),
Regular projective games

Let $\Gamma= (\Theta, N, K, A, T, p, \tau, u)$ be a multi-stage game. Γ is a regular projective game iff there is a finite index set J and sets Θ_{kj} and A_{ikj} such that for every player i and date k,

(R.1) $\quad A_{ik} = \times_{j \in J} A_{ikj}, \quad \Theta_k = \times_{j \in J} \Theta_{kj},$

(R.2) $\quad \Theta_{kj}$ and A_{ikj} are nonempty compact metric spaces $\forall j \in J$, and all spaces, including products, are given their Borel sigma-algebras,

(R.3) $\quad u_i : \Theta \times A \to \mathbf{R}$ is continuous,
Regular projective games
Let $\Gamma=(\Theta,N,K,A,T,p,\tau,u)$ be a multi-stage game. Γ is a \textit{regular projective game} iff there is a finite index set J and sets Θ_{kj} and A_{ikj} such that for every player i and date k,
Regular projective games

Let $\Gamma=(\Theta,N,K,A,T,p,\tau,u)$ be a multi-stage game. Γ is a *regular projective game* iff there is a finite index set J and sets Θ_{kj} and A_{ikj} such that for every player i and date k,

(R.4) there is a nonnegative, continuous $f_k : \Theta_{\leq k} \times A_{<k} \to [0,\infty)$, and

\[p_k(C|\theta_{<k},a_{<k}) = \int_{C} f_k(\theta_k|\theta_{<k},a_{<k}) \rho_k(d\theta_k), \]

\[\forall (\theta_{<k},a_{<k}) \in \Theta_{<k} \times A_{<k} \text{ and } \forall \text{Borel subsets } C \subseteq \Theta_k, \]

where $\rho_k = \times_{j \in J} \rho_{kj}$ is a product measure on $\Theta_k = \times_{j \in J} \Theta_{kj}$,
Regular projective games

Let $\Gamma=(\Theta,N,K,A,T,p,\tau,u)$ be a multi-stage game.

Γ is a \textit{regular projective game} iff there is a finite index set J
and sets Θ_{kj} and A_{ikj} such that for every player i and date k,
Regular projective games

Let $\Gamma=(\Theta,N,K,A,T,p,\tau,u)$ be a multi-stage game. Γ is a regular projective game iff there is a finite index set J and sets Θ_{kj} and A_{ikj} such that for every player i and date k,

(R.5) there exist sets $M_{1ik} \subseteq \{1,\ldots,k\} \times J$ and $M_{2ik} \subseteq N \times \{1,\ldots,k-1\} \times J$, s.t.

$$\tau_{ik}(\theta_{\leq k}, a_{<k}) = ((\theta_{hj})_{hj \in M_{1ik}}, (a_{hnj})_{hnj \in M_{2ik}}),$$

i.e., i's type at k is just a list of state coordinates and action coordinates from dates up to k.
Existence of open sequential equilibria

Theorem. In regular projective games, the set of open sequential equilibria is nonempty and in all finite games it is equivalent to the set of Kreps-Wilson sequential equilibria.

Remark. Since distinct players can observe the same choice of Nature, regular projective games need not satisfy the information diffuseness condition of Milgrom-Weber (1985).
A mapping $\mu : Y \times B \to [0,1]$ is a subgame perfect open sequential equilibrium of Γ iff B is a neighborhood basis for the players’ types, and, $\forall \varepsilon > 0$, \forall finite $F \subseteq B$, and \forall finite $G \subseteq Y$, $\exists (\varepsilon, F)$-sequential equilibrium, s, s.t. s is an ε-subgame perfect equilibrium and,

$$|\Pr(Y|C, s) - \mu(Y|C)| < \varepsilon, \forall (Y, C) \in G \times F.$$

Theorem. In regular projective games, the set of subgame perfect open sequential equilibria is nonempty.
Dynamic multi-stage game Γ

- Players move simultaneously at each date $k=1,\ldots,K$.

- Date k: Nature chooses $\theta_k \in \Theta_k$ according to $p_k(\cdot|\theta_{<k},a_{<k})$, then each player i chooses simultaneously from his A_{ik}.

- $\Theta = \times_k \Theta_k$; $A = \times_i A_{ik}$; $\Theta \times A = \{\text{outcomes of the game}\}$.

- $T = \times_i T_{ik}$; $T_{ik} = \{i's \text{ types at date } k\}$. (topologized, and with a countable basis)

- $\tau_{ik} : \Theta_{\leq k} \times A_{<k} \rightarrow T_{ik}$ specifies i's (information) type t_{ik} at date k.

- Perfect recall: $\forall ik \in L, \forall m < k, \exists$ measurable $\phi_{ikm} : T_{ik} \rightarrow T_{im} \times A_{im}$ s.t.

$$\phi_{ikm}(\tau_{ik}(\theta_{\leq k},a_{<k})) = (\tau_{im}(\theta_{\leq k},a_{<m}),a_{im}) \ \forall \theta \in \Theta, \forall a \in A.$$
Dynamic multi-stage game Γ

- Players move simultaneously at each date $k=1,\ldots,K$.

- Date k: Nature chooses $\theta_k \in \Theta_k$ according to $p_k(\cdot|\theta_{<k},a_{<k})$, then each player i chooses simultaneously from his A_{ik}. (endowed with sigma-algebras)

- $\Theta = \times_k \Theta_k$; $A = \times_i A_{ik}$; $\Theta \times A = \{\text{outcomes of the game}\}$.

- $T = \times_i T_{ik}$; $T_{ik} = \{i's \ types \ at \ date \ k\}$. (topologized, and with a countable basis)

- $\tau_{ik}: \Theta_{\leq k} \times A_{<k} \rightarrow T_{ik}$ specifies i's (information) type t_{ik} at date k. (perfect recall, 22)

- $u_i: \Theta \times A \rightarrow \mathbb{R}$ is player i's bounded vNM utility function. (measurable functions)

- A strategy for i at date k is a function $s_{ik}: T_{ik} \rightarrow \Delta(A_{ik})$. ($S_{ik} = \{\text{strategies for } i \text{ at date } k\}$)

- **RCP:** $s_{ik}(\cdot|t_{ik}) \in \Delta(A_{ik}) \ \forall t_{ik} \in T_{ik}$, and $s_{ik}(C|t_{ik})$ is mbl in $t_{ik} \ \forall \text{mbl } C \subset A_{ik}$. (return, 2)
Spurious miscoordination: the need for uniform sequential rationality across all events

Example 8.
- Players 1 and 2 each make a choice from [0,1] at date 1.
- After observing the date 1 choices, players 3 and 4 each make a choice from [0,1] at date 2.
- At date 3, nature determines with equal probability whether player 5 observes the choices of 1 and 3 or of 2 and 4, but player 5 does not know which pair of choices he observes.
- After the observation, player 5 chooses an action from {0,1}, which determines the common payoff of the two players whose choices he observed. All other players receive a payoff of zero, including player 5.

- It should not be possible for each of the two odd players to receive an expected payoff close to 1/2 without each of the two even players also being able to do so.
- But for any finite $\mathcal{F} \subseteq T^*$, if $x \neq y$ are actions for player 2 that are both in one of 4’s type sets in \mathcal{F} and any set of 4’s in \mathcal{F} that contains x also contains y, then consider strategies that give positive probability to all sets in \mathcal{F} and that also satisfy the following:
 - Players 1 and 3 place probability $1-\varepsilon^2$ on, respectively, $a_1=x$ and $s_3(t_3)=x \ \forall t_3$, and players 2 and 4 place probability $1-\varepsilon^2$ on, respectively, $a_2=y$ and $s_4(t_4)=y \ \forall t_4$. Player 5’s strategy chooses action 1 iff he observes (x,x).
 - These (nonsensical) strategies reach every set in \mathcal{F} with positive probability and, for $\varepsilon>0$ small enough, are ε-sequentially rational there. So they form an $(\varepsilon,\mathcal{F})$-sequential equilibrium.
 - To eliminate: sequential rationality should be imposed uniformly across all events. (But how?)