Discussion of “Financial Networks and Contagion”
Elliott, Golub, and Jackson (2013)

Alireza Tahbaz-Salehi
Columbia Business School

Macro Financial Modeling and Macroeconomic Fragility Conference
October 2013
A model of interconnected organizations with claims on:

(i) some fundamental assets
(ii) each other.

Amplification mechanism: Discontinuous loss in productive value if an institution’s market value falls below a certain threshold.

Key question: how the nature of such interdependencies affect the stability of the system as a whole?

Results: “more interconnectivity” has a non-monotonic effect.
Model

- n institutions/organizations
- m assets
- p_k: price of asset k
- D_{ik}: share of asset k held by institution i

Interconnectivity: cross-holding of shares
- C_{ij}: fraction of institution j owned by organization i.
- \hat{C}_{ii}: fraction held by i’s outside shareholders.

$$\hat{C}_{ii} = 1 - \sum_{j \neq i} C_{ij}$$
Model

- \(n \) institutions/organizations
- \(m \) assets
- \(p_k \): price of asset \(k \)
- \(D_{ik} \): share of asset \(k \) held by institution \(i \)

Interconnectivity: cross-holding of shares

- \(C_{ij} \): fraction of institution \(j \) owned by organization \(i \).
- \(\hat{C}_{ii} \): fraction held by \(i \)'s outside shareholders.

\[
\hat{C}_{ii} = 1 - \sum_{j \neq i} C_{ij}
\]
The cross-holdings define a network:
Integration and Diversification

- **Integration:** C' more integrated than C if
 \[\hat{C}'_{ii} \leq \hat{C}_{ii} \quad \forall \ i \]
 captures the total level of exposure of organizations to each other.

- **Diversification:** C' more diversified than C if
 \[C'_{ij} \leq C_{ij} \quad \forall \ i,j \text{ such that } C_{ij} > 0 \]
 \[C'_{ij} > C_{ij} \quad \text{for some } i, j \text{ such that } C_{ij} = 0. \]
 captures how spread out cross-holdings are.
Integration and Diversification

- **Integration**: C' more integrated than C if

\[
\hat{C}_{ii} \leq \tilde{C}_{ii} \quad \forall \ i
\]

captures the total level of exposure of organizations to each other.

- **Diversification**: C' more diversified than C if

\[
C'_{ij} \leq C_{ij} \quad \forall \ i,j \text{ such that } C_{ij} > 0
\]
\[
C'_{ij} > C_{ij} \quad \text{for some } i,j \text{ such that } C_{ij} = 0.
\]

captures how spread out cross-holdings are.
Book Values

- **Book value** of organization i:

$$V_i = \sum_{j \neq i} C_{ij} V_j + \sum_k D_{ik} p_k$$

$$V = (I - C)^{-1} Dp$$

- However,

$$\sum_i V_i > \sum_k p_k.$$

- In fact, if $\hat{C}_{ii} = \hat{c} < 1$ for all i:

$$\sum_i V_i = \frac{1}{\hat{c}} \sum_k p_k.$$

- The book values are artificially inflated.
Book Values

- **Book value** of organization i:

$$V_i = \sum_{j \neq i} C_{ij} V_j + \sum_k D_{ik} p_k$$

$$V = (I - C)^{-1} Dp$$

- However,

$$\sum_i V_i > \sum_k p_k.$$

- In fact, if $\hat{C}_{ii} = \hat{c} < 1$ for all i:

$$\sum_i V_i = \frac{1}{\hat{c}} \sum_k p_k.$$

- The book values are artificially inflated.
Book Values

- **Book value** of organization i:

\[
V_i = \sum_{j \neq i} C_{ij} V_j + \sum_k D_{ik} p_k
\]

\[
V = (I - C)^{-1} D p
\]

- However,

\[
\sum_i V_i > \sum_k p_k.
\]

- In fact, if $\hat{C}_{ii} = \hat{c} < 1$ for all i:

\[
\sum_i V_i = \frac{1}{\hat{c}} \sum_k p_k.
\]

- The book values are artificially inflated.
Market Values

- **Market values**: the equity value of the organization held by its *outside* investors.

\[v_i = \hat{C}_{ii} \cdot V_i. \]

- or in vector form:

\[v = \hat{C}(I - C)^{-1}Dp. \]
Contagion: A drop in the value of the an asset held by \(j \) can lead to the fall in value of \(i \) even if it does not directly hold the asset.

Absent any amplification mechanism, however, the losses are simply reallocated across the network:

\[
\frac{\partial}{\partial p_k} \sum_i v_i = 1 \quad \text{for all networks}
\]

All network structures are alike.
Contagion: A drop in the value of the an asset held by j can lead to the fall in value of i even if it does not directly hold the asset.

Absent any amplification mechanism, however, the losses are simply reallocated across the network:

$$\frac{\partial}{\partial p_k} \sum_i v_i = 1 \quad \text{for all networks}$$

All network structures are alike.
Failure costs:

\[v = \hat{C}(I - C)^{-1} \left(Dp - \beta(p) \mathbf{1}_{\{v_i < \underline{v}_i\}} \right). \]

Discontinuous loss in productive value if an institution’s market value falls below a certain threshold \(\underline{v}_i \).

* inefficient use of the assets
* discontinuous jumps in the cost of capital
* bankruptcy and legal costs

Value of the organizations: fixed point \((v_1, \ldots, v_n)\).
Fix a matrix $\pi = [\pi_{ij}]$

π_{ij}: the fraction of nodes that have in-degree i and out-degree j.

$G(\pi, n)$: the set of all networks on n nodes with distribution π.

Draw a network $G \in G(\pi, n)$ uniformly at random.

$$C_{ij} = \frac{cG_{ij}}{d_{j,\text{out}}}$$

$$\hat{C}_{ii} = 1 - c$$

$c = \text{the extent of integration.}$

$d = \text{expected out-degree of the vertex at the end of a random edge}$
Limit Contagion

- Regularity assumptions:
 - $v_i = \bar{v}$ for all i
 - $D = I$: each bank holds a single asset.
 - $p = (1, 1, \ldots, 1)$
 - shock: $p_i \rightarrow 0$ uniformly at random.
 - $\beta_j = 1$: the asset value of a failing firm is completely wiped out.

- Fix π, and consider a sequence of networks growing in size n

- Limit contagion:
 if a non-vanishing fraction of organizations fail as $n \rightarrow \infty$.
Limit Contagion

- Regularity assumptions:
 - \(v_i = \bar{v} \) for all \(i \)
 - \(D = I \): each bank holds a single asset.
 - \(p = (1, 1, \ldots, 1) \)
 - shock: \(p_i \to 0 \) uniformly at random.
 - \(\beta_j = 1 \): the asset value of a failing firm is completely wiped out.

- Fix \(\pi \), and consider a sequence of networks growing in size \(n \)

- **Limit contagion:**
 if a non-vanishing fraction of organizations fail as \(n \to \infty \).
Main Result: Integration

Proposition

\[c(1 - c) < \alpha, \text{ then there is no limit contagion.} \]

Integration’s effect is non-monotonic:

- **low**: little exposure to others, failures do not trigger cascades
- **high**: difficult to get the first failure (drop in own assets does not trigger failure)
Main Result: Integration

Proposition

If \(c(1 - c) < \alpha \), then there is no limit contagion.

Integration’s effect is non-monotonic:

- **low**: little exposure to others, failures do not trigger cascades
- **high**: difficult to get the first failure (drop in own assets does not trigger failure)
Main Result: Diversification

Proposition

Suppose integration is neither too low nor too high.

(a) $d < 1$: no limit contagion.

(b) $1 < d_{\text{max}} < \alpha c (1 - c)$: limit contagion.

(c) $d_{\text{min}} > \alpha c (1 - c)$: no limit contagion.

Diversification’s effect is non-monotonic:

- **low**: fragmented network; no widespread contagion
- **high**: little exposure to any single org; failures do not spread
Most analytical results for asymptotically large random graphs:

- Even though the intuitions are clear from the current results, still valuable to solve the problem for deterministic, small structures (even if structures are simple).

- Possible to obtain results for the “first threshold of failure”?
A model of value interdependencies $v_i = f_i(v_{-i})$.

Current interpretation:

- firms have (debt?) obligations to one another.
- if i’s value does not cover its obligations, firm j gets $C_{ij}V_i$.
- outside owners get $v_i = \hat{C}_{ii}V_i$.
- If $v_i < v$, the owner stops the operations of the firm.

Discontinuities triggered by value and not the cash flow.

Margin requirements? Collateral/balance sheet constraints?

Fleshing out the micro-foundations in more detail.
A model of value interdependencies $v_i = f_i(v_{-i})$.

Current interpretation:

- firms have (debt?) obligations to one another.
- if i’s value does not cover its obligations, firm j gets $C_{ij}V_i$.
- outside owners get $v_i = \hat{C}_{ii}V_i$.
- If $v_i < v$, the owner stops the operations of the firm.

Discontinuities triggered by value and not the cash flow.

Margin requirements? Collateral/balance sheet constraints?

Fleshing out the micro-foundations in more detail.
Linear dependencies: banks cannot meet the face value of their obligations.

but this means... comparative statics results are essentially conditional.

The set of institutions in the “linear” region is endogenous.

potentially depends on diversification and integration.
Linear dependencies: banks cannot meet the face value of their obligations.

but this means... comparative statics results are essentially conditional.

The set of institutions in the “linear” region is endogenous.

potentially depends on diversification and integration.
Very interesting and relevant paper, with clean insights (even though the problem may first look intractable).

- Fleshing out the micro-foundations in more detail
- There is still value in analyzing simple, non-random, “finite” size networks.
- Given the interpretation, comparative statics that focus on the non-distressed regime also valuable.