Discussion of
“Systemic Risk and Stability
in Financial Networks”
by Acemoglu, Ozdaglar, & Tahbaz-Salehi

Jennifer La’O
Columbia University

October 11, 2013
This Paper

- Provides a framework to think about how different financial networks may be more susceptible to systemic risk

- Two models:
 1. Exogenous Network Structure
 2. Endogenous Network Formation

- Two questions:
 1. How does the network structure affect financial stability?
 2. What externalities may occur in the equilibrium formation of networks?
An Exogenous Network Model of Contagion
A Financial Network Model of Contagion

- n banks indexed by $j \in \{1, n\}$
- y_{ij} is the amount bank j owes bank i
- each bank also owes v to an outside (senior) creditor
A Financial Network Model of Contagion

- n banks indexed by $j \in \{1, n\}$
- y_{ij} is the amount bank j owes bank i
- each bank also owes v to an outside (senior) creditor
- total liabilities of bank j

$$y_j + v \quad \text{where} \quad y_j = \sum_{i \neq j} y_{ij}$$

- The financial network is given by $\{y_{ij}\}$
- Restrict attention to “regular” networks:
 all banks have identical claims and liabilities

$$\forall i, \quad \sum_{j \neq i} y_{ij} = \sum_{j \neq i} y_{ji} = y \quad \text{for some } y$$
Examples: Ring Network and Complete Network

(a) The ring financial network

(b) The complete financial network
Shocks

- Bank j receives returns $z_j \in \{a, a - \epsilon\}$
- $\epsilon \in (a - \nu, a)$ is a negative shock
 - $z_j = a$ if not hit with negative shock
 - $z_j \in (0, \nu)$ if hit with negative shock \rightarrow will default
- m banks get hit with negative shock. For now, let $m = 1$
Payments

- \(x_{js} \in [0, y_{js}] \) denotes repayment by bank \(s \) to bank \(j \)
- bank \(j \) total cash flow
 \[z_j + \sum_{s \neq j} x_{js} \]
- bank \(j \) total liabilities
 \[y_j + v \]
Seniority

\[y(j) \]
\[v \]

- Equity of bank \(j \)
- Bank creditors
- Outside investors

Cash flow

Figure:
Payment Equilibrium

- Equilibrium conditions for \(\{x_{ij}\} \)

\[
x_{ij} = \frac{y_{ij}}{y_j} \max \left\{ 0, \min \left\{ y_j, z_j - \nu + \sum_{s \neq j} x_{js} \right\} \right\}
\]

Proposition

An equilibrium always exists and is (generically) unique
In equilibrium, there are 3 types of banks:

- banks hit with the negative shock that default (zero equity)
- banks not hit with negative shock that default (zero equity)
- banks not hit with negative shock with positive equity
Measures of Financial Stability

• Stability
 \[
 \frac{1}{E[\#\text{defaults}]}
 \]

• Resilience
 \[
 \frac{1}{\max(\#\text{defaults})}
 \]

• these depend on \(m, \epsilon \), and the financial network structure

• let \(m = 1 \), consider these measures across different networks
Small Shock Regime

- Let ϵ^* denote some threshold

$$\epsilon^* = n(a - \nu)$$

total excess liquidity in the system

Proposition

Suppose $\epsilon < \epsilon^*$. Then $\exists \ y^*$ s.t. for $y > y^*$

(i) the ring network is the least resilient, least stable

(ii) the complete network is the most resilient, most stable
A Small Shock in the Ring Network

(a) The ring financial network
A Small Shock in the Ring Network

(a) The ring financial network
A Small Shock in the Complete Network

(b) The complete financial network
A Small Shock in the Complete Network

(b) The complete financial network
Large Shock Regime

- Let a δ-connected network be one in which a collection $M \subset N$ has weak connections (δ) to the rest of the network

Proposition

Suppose $\epsilon > \epsilon^*$ and $y > y^*$. Then

(i) the ring and complete networks are both the least resilient, least stable

(ii) for small enough δ, any δ-connected network
is strictly more stable, more resilient than the ring and complete
A Large Shock

(a) The ring financial network

(b) The complete financial network
Delta-Connected Network
A Large Shock in a Delta-Connected Network
Robust Yet Fragile

- Complete Network undergoes a phase transition
 - most stable → least stable
 - “Robust yet Fragile”

- If banks are not very connected, then clearly killing one bank with a large shock can’t propagate across system

- Does the Ring Network always have the most contagion?
Robust Yet Fragile

• Complete Network undergoes a phase transition
 • most stable \rightarrow least stable
 • “Robust yet Fragile”

• If banks are not very connected, then clearly killing one bank with a large shock can’t propagate across system

• Does the Ring Network always have the most contagion?
 Answer: No
Multiple Shocks

Proposition

For $m > 1, \epsilon > \epsilon_m^*$ and intermediate values of y,

(i) the complete network is the least stable

(ii) the ring network is strictly more stable than the complete
Multiple Shocks in a Ring Network

(a) The ring financial network

(b) The ring financial network
Multiple Shocks in Ring: Alvarez-Barlevy (2013)

- For multiple shocks and y not too large, senior creditors do more shock absorption in the ring than in the complete network.
 - The closer shocks are to each other, the larger the losses to senior creditors rather than to other banks.

- Alvarez-Barlevy (2013)
 - Consider m random shocks in a Ring Network of n banks.
 - Allocation is solution to discrete version of “circle covering problem”.
 - Well-studied geometric problem in applied probability (Stevens, 1939).
 - Bose-Einstein statistics \rightarrow exact distribution of defaults.
What do we learn?

- Network structure clearly related to stability, resilience, systemic risk
- But can we say something systematic about network structure and contagion?

Empirical challenge for researchers/policy-makers
What do we learn?

- Network structure clearly related to stability, resilience, systemic risk.
- But can we say something systematic about network structure and contagion?
- This seems very difficult! Everything matters:
 - structure of the network
 - number and size of shocks (m and ϵ)
 - where these shocks are located
 - correlation of shocks (another component of systemic risk)
 - asymmetric networks?
- Must be careful in applying these results
- Empirical challenge for researchers/policy-makers
Welfare
Welfare Effects of Contagion

- All of the previous analysis can be done without considering welfare
 - Right now, welfare is independent of equilibrium allocation
 - Contagion only reshuffles resources across different claimants
Welfare Effects of Contagion

- In order for contagion to matter for welfare, you need some social surplus coming from positive equity banks.

- Suppose banks with positive equity receive long-term return A but banks that default must prematurely liquidate project.

- Then welfare is decreasing in number of defaults:

\[\text{Welfare} = (n - \#\text{defaults}) A + \text{const}. \]
Welfare Effects of Contagion

- In order for contagion to matter for welfare, you need some social surplus coming from positive equity banks.
- Suppose banks with positive equity receive long-term return A but banks that default must prematurely liquidate project.
- Then welfare is decreasing in number of defaults.
 \[
 \text{Welfare} = (n - \text{#defaults}) A + \text{const}.
 \]
- Plausible assumption in order for contagion to be bad.
 \[\implies\text{Keeping as many banks as possible alive is good}\]
- Caveat: Suppose the banks closest to the bad shock bank also have bad investments/practices. Then welfare implications of these failing banks may be unclear.
Endogenous Network Formation
Endogenous Financial Network

- Now suppose banks make lending and borrowing decisions → endogenous formation of the financial network
- Is the equilibrium formation of networks efficient?
Endogenous Financial Network

• Now suppose banks make lending and borrowing decisions
 → endogenous formation of the financial network

• Is the equilibrium formation of networks efficient?

• The Game: take as given an exogenous opportunity network.
 1. All banks i post interest rates $R_{ij}(\ell_{j1}, \ldots, \ell_{jn})$ for each j
 2. After observing posted contracts, each bank chooses contracts
 3. Given contracts, banks decide on how much to borrow ℓ_{ij}

• Generates a financial network, with $y_{ij} = R_{ij}\ell_{ij}$
Summary of Main Results

- $R_{ij}(l_{j1}, \ldots, l_{jn})$ contingent on borrower’s lending behavior
- In 2-chain or 3-chain networks, the equilibrium is efficient
- Why? terms induce “right” behavior of borrower
Summary of Main Results

- $R_{ij}(\ell_{j1}, \ldots, \ell_{jn})$ contingent on borrower's lending behavior

- In 2-chain or 3-chain networks, the equilibrium is efficient
 - Why? terms induce “right” behavior of borrower

- If chains are longer, then equilibrium is not necessarily efficient
 - Externalities: over-lending, insufficiently dense networks

- Why? terms do not induce “right” behavior of borrower of borrower
Contracts and Incomplete Markets

- Why not contracts that are contingent on
 - who my borrower’s borrower lends to...
 - who my borrower’s borrower’s borrower lends to...
- Contracts contingent on the entire state of the network?
 - more contingencies to “complete the market”
- State-contingent debt (contingent on realization of shocks)?
Contracts and Incomplete Markets

- Why not contracts that are contingent on
 - who my borrower’s borrower lends to...
 - who my borrower’s borrower’s borrower lends to...
- Contracts contingent on the entire state of the network?
 - more contingencies to “complete the market”
- State-contingent debt (contingent on realization of shocks)?
- What are the underlying frictions that excludes these contracts?
 - Imperfect monitoring?
- Macro-prudential policy tools
 - capital requirements, leverage ratios
Conclusion

- Very Interesting Paper!
- Important work in understanding the relation between networks and systemic risk
- A lot of work to be done in this area, both theoretically and empirically
 - endogenous network formation
 - measuring/predicting systemic risk:
 - network structures, correlated shocks
 - how this should inform stress tests, macroprudential policy