Intermediation and Voluntary Exposure to Counterparty Risk

Maryam Farboodi

MFM Meeting

October 2013
Motivation

- Systemic risk and contagion
- Too-connected-to-fail
Motivation

- Systemic risk and contagion
- Too-connected-to-fail
- What is *too-connected*?
- Why do banks form connections in the first place?
 - Structure of endogenous equilibrium network
 - What is the optimal financial structure?
This Paper

- Models banks and their bilateral exposures as a network
 - *Intermediation* needed to fund investment
 - Endogenous inter-bank network formation
Models banks and their bilateral exposures as a network

- \textit{Intermediation} needed to fund investment
- Endogenous inter-bank network formation

Equilibrium network has \textit{core-periphery} structure

- Banks who invest at the core
- High gross and low net exposure within the core
This Paper

- Models banks and their bilateral exposures as a network
 - Intermediation needed to fund investment
 - Endogenous inter-bank network formation

- Equilibrium network has core-periphery structure
 - Banks who invest at the core
 - High gross and low net exposure within the core

- Equilibrium network is inefficient
 - Intermediators exposed to excessive counterparty risk
 - Too many connections among banks who invest in risky asset
 - Too few connections among banks who provide funds
Frictions

- Contracting friction
 - Surplus allocation depends on network structure
 - Intermediators get positive share
 - Rents cannot be negotiated away

- Lending friction
 - Minimum size of lending contract
 - Intermediation required
Banking, intermediation and insolvency

Networks
- Allen and Gale (2000), Eisenberg and Neo (2001), Elliott, Golub and Jackson (2011)

Bargaining
Outline

1. Model
2. Equilibrium Intermediation
3. Concluding Remarks
Model

Environment

- \(I \): banks who can invest
 - Potential to make risky investment
- \(NI \): banks who can never invest
 - Have raised one unit on competitive market (debt)

Value of other businesses for each bank: \(V_i \)

Maximize expected return net of expected cost of failure

Universal risk neutrality, no discounting
Risky Technology

- Date 1
 - Investment opportunity arrives with iid probability q at each l
- Date 2
 - iid return across investors \tilde{R}

$$
\tilde{R} = \begin{cases}
R & \text{with probability } p \\
0 & \text{otherwise}
\end{cases}
$$

- Scalable
Timing

- **Date 0**
 - Network formation: banks enter *potential* lending relationships

- **Date 1**
 - Risky investment opportunities arrive
 - Loans made

- **Date 2**
 - Return realized
 - Debt payed back
 - Bank fails and looses V_i if unable to pay back obligation
Frictions and Network Formation

- Contracting friction
 - Cannot negotiate rents down
 - Intermediation payoff only depends on endogenous network structure
Frictions and Network Formation

- Contracting friction
 - Cannot negotiate rents down
 - Intermediation payoff only depends on endogenous network structure
- Minimum size constraint
 - Limit on number of counterparties (endogenous)
Frictions and Network Formation

- Contracting friction
 - Cannot negotiate rents down
 - Intermediation payoff only depends on endogenous network structure
- Minimum size constraint
 - Limit on number of counterparties (endogenous)
- Solution concept: Group Stability
Outline

1. Model

2. Equilibrium Intermediation

3. Concluding Remarks
Evolution of Financial Network ($t = 0$)

Equilibrium Intermediation

Wachovia Lehman Wachovia Lehman

NI_1 NI_2 NI_1 NI_2

\hat{D}_{12}^L: Return to lender

$p(D_L W - D_W) \geq (1 - p) V_I$: Intermediation spread versus cost of failure
Evolution of Financial Network \((t = 0)\)

\[
\begin{align*}
\text{Wachovia} & \quad \text{Lehman} \\
Nl_1 & \quad Nl_2
\end{align*}
\]

\[
\begin{align*}
\text{Wachovia} & \quad \text{Lehman} \\
Nl_1 & \quad Nl_2
\end{align*}
\]

\[
\begin{align*}
D_{L2} & > \hat{D}_{12} \\
p(D_{LW} - D_{W1}) & \geq (1 - p) V_I \\
\text{Intermediation spread versus cost of failure}
\end{align*}
\]
Evolution of Financial Network \((t = 1)\)

\[
\text{Return to lender:}\quad p(D_{LW} - D_W) \geq (1 - p)V_I
\]

Intermediation spread versus cost of failure
Evolution of Financial Network \((t = 2) \)

\[\text{investment} \]

\[\text{Wachovia} \rightarrow \text{Lehman} \]

\[\text{NI}_1 \rightarrow \text{HH} \]

\[\text{NI}_2 \rightarrow \text{HH} \]

\[\text{Wachovia} \rightarrow \text{Lehman} \]

\[\text{NI}_1 \rightarrow \text{HH} \]

\[\text{NI}_2 \rightarrow \text{HH} \]

\[\text{D} \rightarrow \hat{D}_{12}: \text{Return to lender} \]

\[p (D_{W} - D_{W1}) \lesssim (1 - p) V_I: \text{Intermediation spread versus cost of failure} \]
Evolution of Financial Network \((t = 2) \)

- \(D_{L2} > \hat{D}_{12} \): Return to lender
- \(p(D_{LW} - D_{W1}) \leq (1 - p)V_I \): Intermediation spread versus cost of failure
Misaligned Incentives

- Efficiency: scale of investment versus loss in the event of failure
 - *Efficient Intermediator*: impose minimal extra cost of failure
- Equilibrium: return versus loss of failure
 - *Intermediation spread* versus *cost of default*
 - *Equilibrium Intermediator*: offer highest rate of return
 - Does he minimize the cost?
General Result

Theorem

When intermediation rents are sufficiently high, all the equilibria consist of a subset of I banks at the core, forming a digraph. Each I bank at the core borrows from a subset of NI banks, and lends to every I bank outside the core. These equilibria are all inefficient.

(a) Equilibrium

(b) Efficient
Outline

1 Model

2 Equilibrium Intermediation

3 Concluding Remarks
Conclusion

- Core-periphery financial network
 - Banks who invest at the core
 - High gross and low net exposure at the core
- Inefficient intermediation (and dis-intermediation)
 - Voluntarily exposure to counterparty risk
- Policy
 - Cap on Number of Counterparties a bank can lend to
 - Central Clearing Party (CCP)
 - *Future work*: Bailouts and capital requirements?