The Risk Channel of Unconventional Monetary Policy

Dejanir Silva

UIUC - Finance

March, 2017
Dramatic change in central bank portfolio

USD Billions

Composition FED Balance Sheet:
- Other Assets
- Agency and MBS Holdings
- Treasury Holdings
Stimulus and potential side effect

Goal: stimulate economy
Federal Reserve on objective of asset purchases

”... help to make broader financial conditions more accommodative through the purchase of longer-term securities.”
Stimulus and potential side effect

Goal: stimulate economy
Federal Reserve on objective of asset purchases

”... help to make broader financial conditions more accommodative through the purchase of longer-term securities.”

Potential side effect: risk-taking
BIS, commenting on central bank policy:

”Extraordinarily low interest rates and compressed risk premia once again pushed investors into riskier assets in their search for yield [...]”
Stimulus and potential side effect

Goal: stimulate economy
Federal Reserve on objective of asset purchases

”... help to make broader financial conditions more accommodative through the purchase of longer-term securities.”

Potential side effect: risk-taking
BIS, commenting on central bank policy:

”Extraordinarily low interest rates and compressed risk premia once again pushed investors into riskier assets in their search for yield […]”

Policy evaluation:
• Integrated view: effects on the real economy and on financial risk-taking
What are the effects of unconventional monetary policy on financial markets and the real economy?
What are the effects of unconventional monetary policy on financial markets and the real economy?

1) Heterogeneous Risk-Aversion

2) Limited Asset Market Participation
What are the effects of unconventional monetary policy on financial markets and the real economy?

1) Heterogeneous Risk-Aversion
 • Active traders: Savers more risk-averse than Bankers

2) Limited Asset Market Participation
What are the effects of unconventional monetary policy on financial markets and the real economy?

1) Heterogeneous Risk-Aversion
 - Active traders: Savers more risk-averse than Bankers

 \[\text{Drop in share of wealth of bankers} \xrightarrow{1} \text{Aggregate risk aversion} \xrightarrow{1} \text{Price of risky asset and investment} \]

2) Limited Asset Market Participation
What are the effects of unconventional monetary policy on financial markets and the real economy?

1) Heterogeneous Risk-Aversion
 - Active traders: Savers more risk-averse than Bankers

 ![Diagram]
 - Drop in share of wealth of bankers
 - Aggregate risk aversion
 - Price of risky asset and investment

2) Limited Asset Market Participation
 - Passive traders who hold market portfolio
What are the effects of unconventional monetary policy on financial markets and the real economy?

1) Heterogeneous Risk-Aversion
 • Active traders: Savers more risk-averse than Bankers

 Drop in share of wealth of bankers \rightarrow Aggregate risk aversion \rightarrow Price of risky asset and investment

2) Limited Asset Market Participation
 • Passive traders who hold market portfolio

 Asset purchases by the CB \rightarrow Net supply of risk to active traders \rightarrow Price of risky asset during crises
Main findings

1) Output growth rate: Crises vs normal times
 - Asset purchases ⇒ rise in output growth during crises
 - Expectation of less severe crises ⇒ less output growth in normal times

2) Risk concentration and probability of crises
 - Asset purchases ⇒ fall in risk concentration and endogenous volatility
 - Stationary distribution: Probability of future crises falls
Overview of the environment:

- Continuous-time. Two goods: consumption and capital.

- **Firms** produce final goods using capital
 - Investment adjustment costs

- **Active traders** (bankers and savers) trade risky and riskless assets
 - Heterogeneity: savers are more *risk averse* than bankers.

- **Hand-to-mouth households** consume government transfers

- **Central bank** issues riskless liabilities and buy risky assets
 - Rebates the proceeds to hand-to-mouth consumers
Firms

• Linear technology:

\[Y_t = AK_t \]
Firms

• Linear technology:

\[Y_t = AK_t \]

• Law of motion of capital:

\[\frac{dK_t}{K_t} = g_t dt + \sigma dZ_t \]
Firms

• Linear technology:

\[Y_t = AK_t \]

• Law of motion of capital:

\[\frac{dK_t}{K_t} = g_t dt + \sigma dZ_t \]

• Problem of the firm

\[S_t = \max_g E \left[\int_t^\infty \frac{\pi_s}{\pi_t} (A - \iota(g_s)) ds \right] \]

where \(\iota' > 0, \iota'' > 0 \).
Firms

- Linear technology:
 \[Y_t = AK_t \]

- Law of motion of capital:
 \[\frac{dK_t}{K_t} = g_t dt + \sigma dZ_t \]

- Problem of the firm
 \[S_t = \max_g E \left[\int_t^{\infty} \frac{\pi_s}{\pi_t} (A - i(g_s)) ds \right] \]
 \[(1) \]
 where \(i' > 0, i'' > 0 \).

- The SPD satisfies
 \[\frac{d\pi_t}{\pi_t} = -r_t dt - \eta_t dZ_t \]
 \(\text{int.rate} \quad \text{mkt.price of risk} \)
Active traders

• Decision problem of active traders (bankers $j = b$, savers $j = s$):

$$V_j = \max_{(c_j, \alpha_j)} U_j(c_j)$$ (2)

subject to $n_{j,t} \geq 0$ and

$$\frac{dn_{j,t}}{n_{j,t}} = \left[r_t + \alpha_{j,t}(\mu_{R,t} - r_t) - \frac{c_{j,t}}{n_{j,t}} \right] dt + \alpha_{j,t}\sigma_{R,t}dZ_t$$
Active traders

• Decision problem of active traders (bankers $j = b$, savers $j = s$):

$$V_j = \max_{(c_j, \alpha_j)} U_j (c_j)$$

subject to $n_{j,t} \geq 0$ and

$$\frac{dn_{j,t}}{n_{j,t}} = \left[r_t + \alpha_{j,t} \sigma_{R,t} \right] - \frac{c_{j,t}}{n_{j,t}} dt + \alpha_{j,t} \sigma_{R,t} dZ_t$$
Active traders

- Decision problem of active traders (bankers $j = b$, savers $j = s$):

$$V_j = \max_{(c_j, \alpha_j)} U_j(c_j)$$

subject to $n_{j,t} \geq 0$ and

$$\frac{dn_{j,t}}{n_{j,t}} = \left[r_t + \sigma_{j,t} \eta_t - \frac{c_{j,t}}{n_{j,t}} \right] dt + \sigma_{j,t} dZ_t$$

- Preferences: continuous-time EZ preferences
 - EIS $\psi > 1$ and risk aversion γ_j
 - Savers are more risk averse than bankers: $\gamma_s > 1 > \gamma_b$
 - Mortality risk \Rightarrow stationary distribution
Hand-to-mouth consumers and the Central Bank

- Hand-to-mouth consumers: simply consume government transfers
 - Simplifying assumption

- Important is the presence of investors who don’t continuously rebalance their portfolio

- Central bank is subject to No-Ponzi condition and

\[
\frac{dn_{cb,t}}{n_{cb,t}} = \left[r_t + \sigma_{cb,t} \eta_t - \frac{T_t}{n_{cb,t}} \right] dt + \sigma_{cb,t} dZ_t
\] \hspace{1cm} (8)

\[(\sigma_{cb,t}, T_t) \text{ determined by policy rules}\]

\[
\sigma_{cb,t} = \sigma_{cb}(x_t, w_t); \quad T_t = T(x_t, w_t)
\]

where \((x_t, w_t)\) is the vector of state variables.
Two benchmarks

1) Homogeneous risk-aversion \((\gamma_b = \gamma_s)\):

- No risk concentration
 \[\sigma_{b,t} = \sigma_{s,t} \]
- Balanced growth path
- No variation in returns/growth rates
- No balance sheet recession

2) Full participation benchmark:
No hand-to-mouth/passive traders. Fix initial \((\sigma_{cb}, T)\) and consider \((\sigma^*, T^*)\).

- Investors exactly offset policy change
- Neutrality result: no changes in consumption, prices, and investment
 - Modigliani-Miller / Ricardian Equivalence type of result (see Wallace (1981)).
Market price of risk

\[\eta_t = \gamma_t \left[\omega_t^r (\sigma + \sigma_{q,t}) + h_t \right] \]

- **Aggregate risk aversion:**
 \[\gamma_t = \left(\frac{x_t}{\gamma_b} + \frac{1 - x_t}{\gamma_s} \right)^{-1} \]
 where \(x \) is the share of wealth of low risk version agent.

- **Net supply of risk:** \(\omega_t^r \)
 - Without a central bank, \(\omega_t^r = 1 \)

- **Hedging terms:** \(h_t \)
 - Average hedging demand for
\[q_t = \frac{A - \lambda(g_t)}{r_t + (\sigma + \sigma_{q,t})\eta_t - \mu} S_{t,t} \]

\[\lambda^t(g_t) = q_t \]

Market price of risk

Price of capital

\[\eta \]

\[\log(q) \]
Balance sheet recession

\[q_t = \frac{A - i(g_t)}{r_t + (\sigma + \sigma_{q,t})\eta_t - \mu} \]

\[i'(g_t) = q_t \]

Market price of risk

Price of capital
Effect on Interest Rates

Weak balance sheet of bankers:
- High aggregate risk aversion
- Precautionary savings
Effect on Interest Rates

Weak balance sheet of bankers:
- High aggregate risk aversion
- Precautionary savings

Effect of asset purchases:
- Precautionary savings
- Intertemporal substitution
Myopic and Hedging Demands

\[\sigma_{b,t} = \frac{\eta_t}{\gamma_b} + \frac{1 - \gamma_b}{\gamma_b} \sigma_{\zeta,t} \]

\(\sigma_{b,t} / (\sigma + \sigma_q) \)

Leverage

Myopic component

Hedging component

\(\sigma_{b,t} = \eta_t + \frac{1}{\gamma_b} \sigma_{\zeta,t} \)
UMP and Risk Concentration

$$\sigma_{b,t} = \underbrace{\frac{\eta_t}{\gamma_b}}_{\text{myopic}} + \underbrace{\frac{1 - \gamma_b}{\gamma_b}}_{\text{hedging}} \sigma_{\zeta,t}$$

Risk concentration

Myopic component

Hedging component
Endogenous volatility

\[
\sigma_{q,t} = \frac{q_{x,t}}{q_t} \sigma_{x,t} + \frac{q_{w,t}}{q_t} \sigma_{w,t}
\]

\[
\sigma_{x,t} = x_t \left(1 - x_t \right) (\sigma_{b,t} - \sigma_{s,t})
\]
Endogenous volatility

\[\sigma_{q,t} = \frac{q_{x,t}}{q_t} \sigma_{x,t} + \frac{q_{w,t}}{q_t} \sigma_{w,t} \]

\[\sigma_{x,t} = x_t (1 - x_t) (\sigma_{b,t} - \sigma_{s,t}) \]
UMP and Financial Stability

![Probability Density Function (PDF) of g(%) for Laissez-faire and Central bank policies.](image)

- **PDF**
 - **g(%)**
 - **number of std. deviations below the mean**

Laissez-faire

Central bank

- **Probability**
 - **0.45**
 - **0.4**
 - **0.35**
 - **0.3**
 - **0.25**
 - **0.2**
 - **0.15**
 - **0.1**
 - **0.05**
 - **0.0**

- **number of std. deviations below the mean**
 - **0**
 - **0.5**
 - **1**
 - **1.5**
 - **2**
 - **2.5**
 - **3**

Equations

- $f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

Parameters

- **μ**: Mean
- **σ**: Standard deviation

Laissez-faire and Central bank policies are compared in terms of their deviation from the mean, with the Central bank showing lower probabilities of deviations.
Thanks.