Optimal Financial Transaction Taxes

Eduardo Dávila

NYU Stern

Advances in Price Theory Conference
Becker Friedman Institute
12/04/2015
Motivation

- Should financial transactions be taxed?
Motivation

- Should financial transactions be taxed?
- Verbal arguments
 - Tobin 72
 - Stiglitz 89, Summers and Summers 89, Ross 89
- Little formal analysis
Motivation

- Should financial transactions be taxed?
- Verbal arguments
 - Tobin 72
 - Stiglitz 89, Summers and Summers 89, Ross 89
- Little formal analysis
- This paper: welfare-theoretic analysis of transaction taxes
Preview: 3 roles of financial markets

Exchange
Economy

Fundamental Trading
Preview: 3 roles of financial markets

- Exchange
- Economy

Risk Sharing/Transfer
- Life Cycle
- Informed Trading

Fundamental Trading

[OBPS]

τ∗ > 0

"q-theory"

Tax/Subsidy τ∗ ≷ 0

Information aggregation ⇒ Irrelevance results

Information acquisition ⇒ Less information acquired

"Trading Costs and Informational Efficiency"
Davila/Parlatore (2015)
Preview: 3 roles of financial markets

Exchange Economy

Risk Sharing/Transfer
- Life Cycle
- Informed Trading

Fundamental Trading

Non-fundamental Trading

"q-theory"

"Trading Costs and Informational Efficiency"
Davila/Parlatore (2015)

Tax $\tau^* > 0$

Tax/Subsidy $\tau^* \gtrless 0$

Information aggregation \Rightarrow Irrelevance results

Information acquisition \Rightarrow Less information acquired
Preview: 3 roles of financial markets

- Exchange
- Economy
- Risk Sharing/Transfer
 - Life Cycle
 - Informed Trading
- Fundamental Trading
- Non-fundamental Trading
 - Speculation/Betting
 - Belief Disagreement

Davila/Parlatore (2015)

"Trading Costs and Informational Efficiency"
Preview: 3 roles of financial markets

- Exchange Economy
- Fundamental Trading
- Risk Sharing/Transfer
- Life Cycle
- Informed Trading
- Non-fundamental Trading
- Speculation/Betting
- Belief Disagreement

Mathematical notation:

\[\tau^* > 0 \]
Preview: 3 roles of financial markets

- Exchange
- Economy
- Risk Sharing/Transfer

- Fundamental Trading
- Life Cycle
- Informed Trading

- Non-fundamental Trading
- Speculation/Betting
- Belief Disagreement

[OBPS]

Tax \(\tau^* > 0 \)

Information aggregation \(\Rightarrow \) Irrelevance results

Information acquisition \(\Rightarrow \) Less information acquired

"Trading Costs and Informational Efficiency"

Davila/Parlatore (2015)
Preview: 3 roles of financial markets

- Non-fundamental Trading
 - Tax: $\tau^* > 0$
- Fundamental Trading
 - Information aggregation \Rightarrow Irrelevance results
 - Information acquisition \Rightarrow Less information acquired
- Production
 - "q-theory"

[OBPS]
Preview: 3 roles of financial markets

- Exchange
- Economy
- Risk Sharing/Transfer
- Life Cycle
- Informed Trading

Non-fundamental Trading

[OBPS] Tax $\tau^* > 0$

Fundamental Trading

Tax/Subsidy $\tau^* \geq 0$

Production

"q-theory"
Preview: 3 roles of financial markets

1. **Exchange**
 - Fundamental Trading
 - Risk Sharing/Transfer
 - Life Cycle
 - Informed Trading

2. **Speculation/Betting**
 - Non-fundamental Trading
 - Belief Disagreement

3. **Tax**
 - Taxation
 - Tax/Subsidy

Production

Information aggregation ⇒ Irrelevance results
Information acquisition ⇒ Less information acquired

"Trading Costs and Informational Efficiency" Davila/Parlatore (2015)
Preview: 3 roles of financial markets

[OBPS] Tax $\tau^* > 0$

Non-fundamental Trading

Fundamental Trading

Tax/Subsidy $\tau^* \geq 0$

Production

Information aggregation \Rightarrow Irrelevance results
Information acquisition \Rightarrow Less information acquired

"Trading Costs and Informational Efficiency"
Davila/Parlatore (2015)
Roadmap

1. Baseline model: static exchange economy
 - Positive analysis
 - Normative analysis (main results)
Roadmap

1. Baseline model: static exchange economy
 - Positive analysis
 - **Normative** analysis (**main results**)
2. Extensions
 - Static model (several)
 - Dynamics
 - Production
3. Conclusion

4 / 23
Baseline model: CARA-Normal (Lintner 69)

- Single trading stage, $t = \{1, 2\}$
- Distribution of investors $F(i)$ - CARA utility A_i
Baseline model: CARA-Normal (Lintner 69)

- Single trading stage, \(t = \{1, 2\} \)
- Distribution of investors \(F(i) \) - CARA utility \(A_i \)
- Two assets - Unrestricted portfolios
 1. Riskless asset: Gross rate \(R = 1 \) - Elastic supply - Irrelevant endowment
 2. Risky asset: Price \(P_1 > 0 \) - Fixed supply \(Q \) - Pays dividend \(D \)
 - Initial position \(X_{0i} \) - Choose \(X_{1i} \)
Baseline model: CARA-Normal (Lintner 69)

- Single trading stage, $t = \{1, 2\}$
- Distribution of investors $F(i)$ - CARA utility A_i
- Two assets - Unrestricted portfolios
 1. Riskless asset: Gross rate $R = 1$ - Elastic supply - Irrelevant endowment
 2. Risky asset: Price $P_1 > 0$ - Fixed supply Q - Pays dividend D
 - Initial position X_{0i} - Choose X_{1i}
- (True) Dividend distribution
 $$D \sim N(\mathbb{E}[D], \text{Var}[D])$$
- Heterogeneous dogmatic beliefs (disagreement about means)
 $$D \sim N(\mathbb{E}_i[D], \text{Var}[D])$$
Baseline model: CARA-Normal (Lintner 69)

- Single trading stage, \(t = \{1, 2\} \)
- Distribution of investors \(F(i) \) - CARA utility \(A_i \)
- Two assets - Unrestricted portfolios
 1. Riskless asset: Gross rate \(R = 1 \) - Elastic supply - Irrelevant endowment
 2. Risky asset: Price \(P_1 > 0 \) - Fixed supply \(Q \) - Pays dividend \(D \)
 - Initial position \(X_{0i} \) - Choose \(X_{1i} \)
- (True) Dividend distribution
 \[D \sim N(\mathbb{E}[D], \text{Var}[D]) \]
- Heterogeneous dogmatic beliefs (disagreement about means)
 \[D \sim N(\mathbb{E}_i[D], \text{Var}[D]) \]
- Stochastic endowment, \(E_{2i} \), correlated with \(D \), \(\text{Cov}[E_{2i}, D] \neq 0 \)
Baseline model: CARA-Normal (Lintner 69)

- Single trading stage, $t = \{1, 2\}$
- Distribution of investors $F(i)$ - CARA utility A_i
- Two assets - Unrestricted portfolios
 1. Riskless asset: Gross rate $R = 1$ - Elastic supply - Irrelevant endowment
 2. Risky asset: Price $P_1 > 0$ - Fixed supply Q - Pays dividend D
 - Initial position X_{0i} - Choose X_{1i}
- (True) Dividend distribution
 $$D \sim N(\mathbb{E}[D], \text{Var}[D])$$
- Heterogeneous dogmatic beliefs (disagreement about means)
 $$D \sim N(\mathbb{E}_i[D], \text{Var}[D])$$
- Stochastic endowment, E_{2i}, correlated with D, $\text{Cov}[E_{2i}, D] \neq 0$
- Four reasons to trade
 1. [Fundamental] Different hedging needs $\text{Cov}[E_{2i}, D]$
 2. [Fundamental] Different risk aversion A_i
 3. [Fundamental] Different initial conditions X_{0i}
 4. [Non-fundamental] Different beliefs $\mathbb{E}_i[D]$
Policy instrument

- **Linear anonymous tax**: single instrument
 - Paid by buyers and sellers on the dollar value of the transaction
 - Revenue: \(2\tau P_1 |\Delta X_{1i}|\)

- Assumption: No tax avoidance

- Lump-sum rebate: \(T_{1i} = \tau P_1 |\Delta X_{1i}|\) (for simplicity)

- Ex-ante lump-sum transfers (Kaldor/Hicks: focus on efficiency)

- CARA utility:
 \[U_i(W_{2i}) = -e^{-A_i W_{2i}}\max X_{1i} E_i[U_i(W_{2i})] \Rightarrow \max X_{1i} E_i[W_{2i}] - A_i^2 \text{Var}[W_{2i}]\]

- Return/Budget constraint:
 \[W_{2i} = E_{2i} + X_{1i}D + \left(X_0P_1 - X_{1i}P_1 - \tau P_1 |\Delta X_{1i}| + T_{1i}\right)\]
Policy instrument

- **Linear anonymous tax**: single instrument
 - Paid by buyers and sellers on the dollar value of the transaction
 - Revenue: $2\tau P_1 |\Delta X_{1i}|$
 - Assumption: **No tax avoidance**
Policy instrument

- **Linear anonymous tax**: single instrument
 - Paid by buyers and sellers on the dollar value of the transaction
 - Revenue: $2\tau P_1 |\Delta X_{1i}|$
 - Assumption: **No tax avoidance**

- Lump-sum rebate: $T_{1i} = \tau P_1 |\Delta X_{1i}|$ (for simplicity)
Policy instrument

- **Linear anonymous tax**: single instrument
 - Paid by buyers and sellers on the dollar value of the transaction
 - Revenue: \(2\tau P_1 |\Delta X_{1i}|\)
 - Assumption: **No tax avoidance**

- Lump-sum rebate: \(T_{1i} = \tau P_1 |\Delta X_{1i}|\) (for simplicity)

- Ex-ante lump-sum transfers (Kaldor/Hicks: focus on efficiency)
Investors’ problem

- **Linear anonymous tax**: single instrument
 - Paid by buyers and sellers on the dollar value of the transaction
 - Revenue: $2\tau P_1 |\Delta X_{1i}|$
 - Assumption: **No tax avoidance**

- Lump-sum rebate: $T_{1i} = \tau P_1 |\Delta X_{1i}|$ (for simplicity)

- Ex-ante lump-sum transfers (Kaldor/Hicks: focus on efficiency)

- CARA utility: $U_i (W_{2i}) = -e^{-A_i W_{2i}}$

 $$\max_{X_{1i}} \mathbb{E}_i [U_i (W_{2i})] \Rightarrow \max_{X_{1i}} \mathbb{E}_i [W_{2i}] - \frac{A_i}{2} \text{Var} [W_{2i}]$$
Investors’ problem

- **Linear anonymous tax**: single instrument
 - Paid by buyers and sellers on the dollar value of the transaction
 - Revenue: \(2\tau P_1 |\Delta X_{1i}|\)
 - Assumption: **No tax avoidance**

- Lump-sum rebate: \(T_{1i} = \tau P_1 |\Delta X_{1i}|\) (for simplicity)

- Ex-ante lump-sum transfers (Kaldor/Hicks: focus on efficiency)

- **CARA utility**: \(U_i(W_{2i}) = -e^{-A_i W_{2i}}\)

\[
\max_{X_{1i}} \mathbb{E}_i [U_i(W_{2i})] \Rightarrow \max_{X_{1i}} \mathbb{E}_i [W_{2i}] - \frac{A_i}{2} \text{Var} [W_{2i}]
\]

- Return/Budget constraint:

\[
W_{2i} = E_{2i} + X_{1i} D + \left(X_{0i} P_1 - X_{1i} P_1 - \tau P_1 |\Delta X_{1i}| + T_{1i} \right) \\
\text{Tax/Rebate}
\]
Investors’ problem: solution when $\tau = 0$

$$X_{1i} = \frac{\mathbb{E}_i[D] - A_i \text{Cov}[E_{2i}, D] - P_1}{A_i \text{Var}[D]}$$
Investors’ problem: Inaction + Dampening

\[X_{1i} = \begin{cases}
\frac{E_i[D] - A_i \text{Cov}[E_{2i}, D] - P_1(1+\tau)}{A_i \text{Var}[D]} ; & \Delta X_{1i} > 0 \quad \text{Buyer} \\
X_{0i} ; & \Delta X_{1i} = 0 \quad \text{No Trade} \\
\frac{E_i[D] - A_i \text{Cov}[E_{2i}, D] - P_1(1-\tau)}{A_i \text{Var}[D]} ; & \Delta X_{1i} < 0 \quad \text{Seller}
\end{cases} \]
Investors’ problem: Inaction + Dampening

\[
X_{1i} = \begin{cases}
\frac{\mathbb{E}_i[D] - A_i \text{Cov}[E_{2i}, D] - P_1 (1+\tau)}{A_i \text{Var}[D]} ; & \Delta X_{1i} > 0 \text{ Buyer} \\
X_{0i} ; & \Delta X_{1i} = 0 \quad \text{No Trade} \\
\frac{\mathbb{E}_i[D] - A_i \text{Cov}[E_{2i}, D] - P_1 (1-\tau)}{A_i \text{Var}[D]} ; & \Delta X_{1i} < 0 \text{ Seller}
\end{cases}
\]

\[
\Delta X_{1i} \equiv X_{1i} - X_{0i} \text{ (Net Change in Asset Holdings)}
\]

\[
\Delta X_{1i} > 0 \text{ (Buyer)} \quad \Delta X_{1i} < 0 \text{ (Seller)}
\]
Investors’ problem: Inaction + Dampening

\[X_{1i} = \begin{cases} \frac{E_i[D] - A_i \text{Cov}[E_{2i}, D] - P_1 (1 + \tau)}{A_i \text{Var}[D]} ; & \Delta X_{1i} > 0 \quad \text{Buyer} \\ X_{0i} ; & \Delta X_{1i} = 0 \quad \text{No Trade} \\ \frac{E_i[D] - A_i \text{Cov}[E_{2i}, D] - P_1 (1 - \tau)}{A_i \text{Var}[D]} ; & \Delta X_{1i} < 0 \quad \text{Seller} \end{cases} \]

\[\Delta X_{1i} \equiv X_{1i} - X_{0i} \quad \text{(Net Change in Asset Holdings)} \]

- Convex problem
Equilibrium

- Standard equilibrium definition - Market clearing $\int X_1i \, dF(i) = Q$
Equilibrium

- Standard equilibrium definition - Market clearing $\int X_1i dF(i) = Q$
- Equilibrium price P_1
Equilibrium

- Standard equilibrium definition - Market clearing \(\int X_{1i} dF(i) = Q \)
- Equilibrium price \(P_1 \)

Positive Results:

- **Lemma 1**: \(\frac{dP_1}{d\tau} \) can be positive/negative/zero
- **Lemma 2**: \(\frac{dX_{1i}}{d\tau} \) is negative for buyers (positive for sellers)

\[
\frac{dX_{1i}}{d\tau} = \frac{\partial X_{1i}}{\partial \tau} + \frac{\partial X_{1i}}{\partial P_1} \frac{dP_1}{d\tau}
\]
Equilibrium

- Standard equilibrium definition - Market clearing \(\int X_{1i} dF(i) = Q \)
- Equilibrium price \(P_1 \)

Positive Results:

- **Lemma 1**: \(\frac{dP_1}{d\tau} \) can be positive/negative/zero
- **Lemma 2**: \(\frac{dX_{1i}}{d\tau} \) is negative for buyers (positive for sellers)
\[
\frac{dX_{1i}}{d\tau} = \frac{\partial X_{1i}}{\partial \tau} + \frac{\partial X_{1i}}{\partial P_1} \frac{dP_1}{d\tau}
\]
- Aligned with empirical evidence
Normative analysis: Welfare criterion

- How to assess welfare with heterogeneous beliefs?
Normative analysis: Welfare criterion

• How to assess welfare with heterogeneous beliefs?
• My approach:
 1. Solve planner’s problem using a **single** belief $\mathbb{E}[D]$
Normative analysis: Welfare criterion

• How to assess welfare with heterogeneous beliefs?
• My approach:
 1. Solve planner’s problem using a **single** belief $\mathbb{E}[D]$
 2. Characterize conditions under which the solution to the planner’s problem is **independent** (!) of the belief chosen

Paternalism?

1. Philosophy - Does the planner respect investors’ beliefs? No
2. Constrained Efficiency - Does the planner need to know more than the investors? Not always. No informational advantage

• Different from welfare criteria papers (complementary)
 • BSX15: convex combination of beliefs
 • BCEST15: worst case scenarios over set of possible beliefs
 • GSS14: axiomatic

• Behavioral Welfare Economics
 • O’Donoghue-Rabin, Chetty, Farhi-Gabaix, Campbell 2016, etc
Normative analysis: Welfare criterion

- How to assess welfare with heterogeneous beliefs?
- My approach:
 1. Solve planner’s problem using a **single** belief $\mathbb{E}[D]$
 2. Characterize conditions under which the solution to the planner’s problem is **independent (!)** of the belief chosen
- Paternalism?
 1. **Philosophy** - Does the planner respect investors’ beliefs?
Normative analysis: Welfare criterion

- How to assess welfare with heterogeneous beliefs?
- My approach:
 1. Solve planner’s problem using a single belief $\mathbb{E}[D]$
 2. Characterize conditions under which the solution to the planner’s problem is independent (!) of the belief chosen
- Paternalism?
 1. Philosophy - Does the planner respect investors’ beliefs? **No**
Normative analysis: Welfare criterion

• How to assess welfare with heterogeneous beliefs?

• My approach:
 1. Solve planner’s problem using a **single** belief $\mathbb{E}[D]$
 2. Characterize conditions under which the solution to the planner’s problem is **independent** (!) of the belief chosen

• Paternalism?
 1. **Philosophy** - Does the planner respect investors’ beliefs? **No**
 2. **Constrained Efficiency** - Does the planner need to know more than the investors?
Normative analysis: Welfare criterion

• How to assess welfare with heterogeneous beliefs?

• My approach:
 1. Solve planner’s problem using a **single** belief \(\mathbb{E}[D] \)
 2. Characterize conditions under which the solution to the planner’s problem is **independent** (!) of the belief chosen

• Paternalism?
 1. **Philosophy** - Does the planner respect investors’ beliefs? **No**
 2. **Constrained Efficiency** - Does the planner need to know more than the investors? **Not always.** **No informational advantage**
Normative analysis: Welfare criterion

- How to assess welfare with heterogeneous beliefs?
- My approach:
 1. Solve planner’s problem using a **single** belief $\mathbb{E}[D]$
 2. Characterize conditions under which the solution to the planner’s problem is **independent** (!) of the belief chosen
- Paternalism?
 1. **Philosophy** - Does the planner respect investors’ beliefs? **No**
 2. **Constrained Efficiency** - Does the planner need to know more than the investors? **Not always. No informational advantage**
- Different from welfare criteria papers (complementary)
 - BSX15: convex combination of beliefs
 - BCEST15: worst case scenarios over set of possible beliefs
 - GSS14: axiomatic

...
Normative analysis: Welfare criterion

- How to assess welfare with heterogeneous beliefs?
- My approach:
 1. Solve planner’s problem using a single belief $\mathbb{E}[D]$
 2. Characterize conditions under which the solution to the planner’s problem is independent (!) of the belief chosen
- Paternalism?
 1. Philosophy - Does the planner respect investors’ beliefs? No
 2. Constrained Efficiency - Does the planner need to know more than the investors? Not always. No informational advantage
- Different from welfare criteria papers (complementary)
 - BSX15: convex combination of beliefs
 - BCEST15: worst case scenarios over set of possible beliefs
 - GSS14: axiomatic
- Behavioral Welfare Economics
 - O’Donoghue-Rabin, Chetty, Farhi-Gabaix, Campbell 2016, etc
Normative analysis: Planner’s problem

- Social welfare $V(\tau)$ - Pareto frontier - Welfare weights λ_i

\[
V(\tau) = \int \lambda_i V_i dF(i) \quad \text{with} \quad V_i \equiv \mathbb{E} [U_i (X_{1i})]
\]
Normative analysis: Planner’s problem

- Social welfare $V(\tau)$ - Pareto frontier - Welfare weights λ_i

$$V(\tau) = \int \lambda_i V_1 dF(i) \quad \text{with} \quad V_i \equiv \mathbb{E}[U_i(X_{1i})]$$

1. X_{1i} chosen by investors
2. Planner uses \mathbb{E}, instead of \mathbb{E}_i
Marginal tax change

Proposition 1a: General case

\[
\frac{dV}{d\tau} = \int \lambda_i \frac{dV_i}{d\tau} dF (i)
\]
Marginal tax change

Proposition 1a: General case

\[\frac{dV}{d\tau} = \int \lambda_i \frac{dV_i}{d\tau} dF(i) \]
Proposition 1a: General case

\[
\frac{dV}{d\tau} = \int \lambda_i \frac{dV_i}{d\tau} dF(i)
\]

\[
\frac{dV_i}{d\tau} = \mathbb{E} \left[U'_i(W_{2i}) \right] \quad \frac{d\hat{V}_i}{d\tau}
\]

- Expected Marginal Utility
- Change in Certainty Equivalent
Marginal tax change

Proposition 1a: General case

\[
\frac{dV}{d\tau} = \int \lambda_i \mathbb{E} \left[U_i' (W_{2i}) \right] \frac{d\hat{V}_i}{d\tau} dF (i)
\]
Marginal tax change

Proposition 1a: General case

\[\frac{dV}{d\tau} = \int \lambda_i \mathbb{E} \left[U_i' (W_{2i}) \right] \frac{d\hat{V}_i}{d\tau} dF (i) \]
Marginal tax change

Proposition 1a: General case

\[
\frac{dV}{d\tau} = \int \lambda_i \mathbb{E} \left[U'_i (W_{2i}) \right] \frac{d\hat{V}_i}{d\tau} dF (i)
\]

\[
\frac{d\hat{V}_i}{d\tau} = \begin{bmatrix}
\mathbb{E} [D] - \mathbb{E}_i [D] + \text{Belief distortion} \\
\text{Fundamental distortion}
\end{bmatrix} \begin{bmatrix}
\frac{dX_{1i}}{d\tau} - \text{Terms-of-trade}
\end{bmatrix}
\]

\[
\text{sgn} (\Delta X_{1i}) P_1 \tau
\]
Marginal tax change

Proposition 1a: General case

\[\frac{dV}{d\tau} = \int \lambda_i \mathbb{E} \left[U'_i (W_{2i}) \right] \frac{d\hat{V}_i}{d\tau} dF (i) \]

\[\frac{d\hat{V}_i}{d\tau} = \begin{cases} \mathbb{E} [D] - \mathbb{E}_i [D] + \text{Belief distortion} & \text{Belief distortion} \\ \text{Fundamental distortion} & \text{Fundamental distortion} \\ \frac{dX_{1i}}{d\tau} - \Delta X_{1i} \frac{dP_1}{d\tau} & \text{Terms-of-trade} \end{cases} \]
Marginal tax change

Proposition 1a: General case

\[
\frac{dV}{d\tau} = \int \lambda_i \mathbb{E} \left[U_i'(W_{2i}) \right] \frac{d\hat{V}_i}{d\tau} dF(i)
\]

\[
\frac{d\hat{V}_i}{d\tau} = \left[\underbrace{\mathbb{E}[D] - \mathbb{E}_i[D]}_{\text{Belief distortion}} + \underbrace{\text{sgn}(\Delta X_{1i}) P_1 \tau}_{\text{Fundamental distortion}} \right] \frac{dX_{1i}}{d\tau} - \underbrace{\Delta X_{1i} \frac{dP_1}{d\tau}}_{\text{Terms-of-trade}}
\]
Marginal tax change

Proposition 1a: General case

\[
\frac{dV}{d\tau} = \int \lambda_i \mathbb{E} \left[U'_i (W_{2i}) \right] \frac{d\hat{V}_i}{d\tau} dF (i)
\]

\[
\frac{d\hat{V}_i}{d\tau} = \begin{bmatrix}
\mathbb{E} [D] - \mathbb{E}_i [D] + \text{Belief distortion} & \text{Fundamental distortion} + sgn (\Delta X_{1i}) P_1 \tau \\
\end{bmatrix} \frac{dX_{1i}}{d\tau} - \Delta X_{1i} \frac{dP_1}{d\tau} \text{Terms-of-trade}
\]
Marginal tax change

Proposition 1a: General case

\[
\frac{dV}{d\tau} = \int \lambda_i \mathbb{E} \left[U_i' (W_{2i}) \right] \left[\mathbb{E} [D] - \mathbb{E}_i [D] + \text{sgn} (\Delta X_{1i}) P_1 \tau \right] dX_{1i} \frac{dP_1}{d\tau} - \Delta X_{1i} \frac{dX_{1i}}{d\tau} \, dF (i)
\]
Marginal tax change

Proposition 1a: General case

\[
\frac{dV}{d\tau} = \int \lambda_i \mathbb{E} \left[U'_i (W_{2i}) \right] \left[\mathbb{E} [D] - \mathbb{E}_i [D] + \text{sgn} (\Delta X_{1i}) P_1 \tau \right] \frac{dX_{1i}}{d\tau} - \Delta X_{1i} \frac{dP_1}{d\tau} \right] dF (i)
\]
Marginal tax change

Proposition 1a: General case

\[
\frac{dV}{d\tau} = \int \lambda_i \mathbb{E}[U_i'(W_{2i})] \left[\mathbb{E}[D] - \mathbb{E}_i[D] + \text{sgn}(\Delta X_i) P_1 \right] \left. \frac{dX_{1i}}{d\tau} - \Delta X_i \frac{dP_1}{d\tau} \right| dF(i)
\]

- **Assumption [NR]: No Redistribution**

\[
\lambda_i \mathbb{E}[U_i'(W_{2i})] \text{ is constant } \forall i
\]
Marginal tax change

Proposition 1a: General case

\[\frac{dV}{d\tau} = \int \lambda_i \mathbb{E} \left[U_i' (W_{2i}) \right] \left\{ \mathbb{E} [D] - \mathbb{E}_i [D] + \text{sgn} (\Delta X_{1i}) P_1 \tau \right\} dX_{1i} \frac{d}{d\tau} - \Delta X_{1i} \frac{dP_1}{d\tau} \right\} dF (i) \]

\[\text{Welfare weight} \]
\[\text{Belief distortion} \]
\[\text{Fundamental distortion} \]
\[\text{Terms-of-trade} \]

- **Assumption [NR]: No Redistribution**

\[\lambda_i \mathbb{E} \left[U_i' (W_{2i}) \right] \text{ is constant } \forall i \]

- Kaldor/Hicks efficiency ⇒ Quasilinearity
- Maximization of certainty equivalents (ex-ante transfers)
Marginal tax change

Proposition 1b: [NR] holds

When [NR] holds:

\[
\frac{dV}{d\tau} = \int \left[\left(\mathbb{E} [D] - \mathbb{E}_i [D] \right) + \text{sgn} (\Delta X_{1i}) P_1 \tau \right] \frac{dX_{1i}}{d\tau} - \Delta X_{1i} \frac{dP_1}{d\tau} \right] \right] dF (i)
\]
Marginal tax change

Proposition 1b: [NR] holds

When [NR] holds:

\[
\frac{dV}{d\tau} = \int \left[(\mathbb{E}[D] - \mathbb{E}_i[D]) + \text{sgn}(\Delta X_{1i}) P_1 \tau \frac{dX_{1i}}{d\tau} - \Delta X_{1i} \frac{dP_1}{d\tau} \right] dF(i)
\]

- Market clearing implies

\[
\int \Delta X_{1i} dF(i) = 0
\]
Marginal tax change

Proposition 1b: [NR] holds

When [NR] holds:

\[
\frac{dV}{d\tau} = \int \left[(\mathbb{E} [D] - \mathbb{E}_i [D]) + \text{sgn} (\Delta X_{1i}) P_1 \tau \frac{dX_{1i}}{d\tau} \right] dF (i)
\]

- **Terms-of-trade** drop out
Marginal tax change

Proposition 1b: [NR] holds

When [NR] holds:

\[
\frac{dV}{d\tau} = \int \left[(\mathbb{E}[D] - \mathbb{E}_i[D]) + \text{sgn}(\Delta X_{1i}) P_1 \tau \frac{dX_{1i}}{d\tau} \right] dF(i)
\]

- Market clearing implies

\[
\int \frac{dX_{1i}}{d\tau} dF(i) = 0
\]
Marginal tax change

Proposition 1b: [NR] holds

When [NR] holds:

\[
\frac{dV}{d\tau} = \int \left[-E_i [D] + \text{sgn} (\Delta X_{1i}) P_1 \tau \right] \frac{dX_{1i}}{d\tau} dF (i)
\]

- Planner’s belief drops out
 - Identical optimal policy for any belief (!)
 - Consistency
Marginal tax change

Proposition 1b: [NR] holds

When [NR] holds:

\[
\frac{dV}{d\tau} = \int \left[-E_i[D] + \text{sgn}(\Delta X_{1i}) P_1\tau \right] \frac{dX_{1i}}{d\tau} dF(i)
\]

- **Planner’s belief** drops out
 - Identical optimal policy for any belief (!)
 - Consistency

- **Key assumptions**
 1. No redistribution
 2. Fixed supply
Marginal tax change

Proposition 1c: Sign around $\tau = 0$

When [NR] holds:

$$\frac{dV}{d\tau} = \int \left[-E_i[D] + \text{sgn}(\Delta X_{1i}) P_1 \tau \right] \frac{dX_{1i}}{d\tau} \, dF(i)$$
Marginal tax change

Proposition 1c: Sign around $\tau = 0$

When $[\text{NR}]$ holds:

$$\frac{dV}{d\tau} \bigg|_{\tau=0} = \int -\mathbb{E}_i[D] \frac{dX_{1i}}{d\tau} dF(i)$$

- **Assumption $[\text{OBPS}]$:** Optimists Buyers/Pessimists Sellers
 $$\text{Cov}_F(E_i[D], dX_{1i} \bigg|_{\tau=0}) < 0$$

- Two justifications: disagreement drives trading
 1. Theoretical
 $$X_{1i} = f_1(E_i[D]) + f_2(\text{Cov}[E_2i, D], A_i, X_{0i})$$
 2. Empirical
Marginal tax change

Proposition 1c: Sign around $\tau = 0$

When [NR] holds:

$$\left. \frac{dV}{d\tau} \right|_{\tau=0} = \int -E_i[D] \left. \frac{dX_{1i}}{d\tau} dF (i) \right. = -\text{Cov}_F \left(E_i[D], \left. \frac{dX_{1i}}{d\tau} \right|_{\tau=0} \right)$$
Marginal tax change

Proposition 1c: Sign around \(\tau = 0 \)

When \([\text{NR}]\) holds:

\[
\left. \frac{dV}{d\tau} \right|_{\tau=0} = \int -\mathbb{E}_i [D] \frac{dX_{1i}}{d\tau} dF(i) = -\text{Cov}_F \left(\mathbb{E}_i [D], \left. \frac{dX_{1i}}{d\tau} \right|_{\tau=0} \right)
\]

- **Assumption [OBPS]: Optimists Buyers/Pessimists Sellers**

\[
\text{Cov}_F \left(\mathbb{E}_i [D], \left. \frac{dX_{1i}}{d\tau} \right|_{\tau=0} \right) < 0
\]
Marginal tax change

Proposition 1c: Sign around \(\tau = 0 \)

When [NR] holds:

\[
\left. \frac{dV}{d\tau} \right|_{\tau=0} = \int -E_i[D] \frac{dX_{1i}}{d\tau} dF(i) = -\text{Cov}_F \left(E_i[D], \left. \frac{dX_{1i}}{d\tau} \right|_{\tau=0} \right)
\]

- **Assumption [OBPS]: Optimists Buyers/Pessimists Sellers**

\[
\text{Cov}_F \left(E_i[D], \left. \frac{dX_{1i}}{d\tau} \right|_{\tau=0} \right) < 0
\]

- **Two justifications: disagreement drives trading**
 1. **Theoretical** - \(X_{1i} = f_1(E_i[D]) + f_2(\text{Cov}[E_{2i}, D], A_i, X_{0i}) \)
 2. **Empirical**
Marginal tax change

Proposition 1c: Sign around $\tau = 0$

When [NR] holds:

$$\left. \frac{dV}{d\tau} \right|_{\tau=0} = \int -E_i[D] \frac{dX_{1i}}{d\tau} dF(i) = -\text{Cov}_F \left(E_i[D], \left. \frac{dX_{1i}}{d\tau} \right|_{\tau=0} \right)$$

- Assumption [OBPS]: Optimists Buyers/Pessimists Sellers

$$\text{Cov}_F \left(E_i[D], \left. \frac{dX_{1i}}{d\tau} \right|_{\tau=0} \right) < 0$$
Marginal tax change

Proposition 1c: Sign around $\tau = 0$

When [NR] and [OBPS] hold:

$$\frac{dV}{d\tau} \bigg|_{\tau=0} > 0$$
Marginal tax change

Proposition 1c: Sign around $\tau = 0$

When $[\text{NR}]$ and $[\text{OBPS}]$ hold:

\[
\left. \frac{dV}{d\tau} \right|_{\tau=0} > 0
\]

- Intuition: start from $\tau = 0$, $\uparrow \tau \Rightarrow$ Less trading
 - Less Fundamental trading (2nd order loss)
 - Less Non-fundamental trading (1st order gain)
Marginal tax change

Proposition 1c: Sign around \(\tau = 0 \)

When [NR] and [OBPS] hold:

\[
\left. \frac{dV}{d\tau} \right|_{\tau=0} > 0
\]

- Intuition: start from \(\tau = 0 \), \(\uparrow \tau \Rightarrow \) Less trading
 - Less Fundamental trading (2nd order loss)
 - Less Non-fundamental trading (1st order gain)
- \(\tau^* \) can be negative (a subsidy) if [OBPS] doesn’t hold
Optimal tax τ^*

Proposition 2: Optimal tax

1. When [NR] and [OBPS] hold, $\tau^* > 0$
Optimal tax τ^*

Proposition 2: Optimal tax

1. When [NR] and [OBPS] hold, $\tau^* > 0$
2. When [NR] holds, the optimal tax is given by:

$$\tau^* = \frac{\Omega_B - \Omega_S}{2}$$
Proposition 2: Optimal tax

1. When [NR] and [OBPS] hold, $\tau^* > 0$
2. When [NR] holds, the optimal tax is given by:

$$\tau^* = \frac{\Omega_B - \Omega_S}{2}$$

- With $\Omega_B \equiv \int_{i \in B} \omega_i^B \frac{E_i[D]}{P_1} dF(i)$, equivalently Ω_S
Proposition 2: Optimal tax

1. When [NR] and [OBPS] hold, $\tau^* > 0$

2. When [NR] holds, the optimal tax is given by:

$$
\tau^* = \frac{\Omega_B - \Omega_S}{2}
$$

- With $\Omega_B \equiv \int_{i \in B} \omega_i^B \frac{E_i[D]}{\mathbb{P}_1} dF (i)$, equivalently Ω_S

- **Sufficient statistics**
 1. Beliefs (Pigovian principle)
 2. Equilibrium portfolio derivatives (drop out with symmetry)
Proposition 2: Optimal tax

1. When [NR] and [OBPS] hold, $\tau^* > 0$
2. When [NR] holds, the optimal tax is given by:

$$\tau^* = \frac{\Omega_B - \Omega_S}{2}$$

- With $\Omega_B \equiv \int_{i \in B} \omega^B_i \frac{E_i[D]}{P_1} dF(i)$, equivalently Ω_S
- **Sufficient statistics**
 1. Beliefs (Pigovian principle)
 2. Equilibrium portfolio derivatives (drop out with symmetry)
- Alternative implementation: volume as intermediate target
Optimal tax τ^*

Proposition 2: Optimal tax

1. When [NR] and [OBPS] hold, $\tau^* > 0$
2. When [NR] holds, the **optimal tax** is given by:

$$\tau^* = \frac{\Omega_B - \Omega_S}{2}$$

- With $\Omega_B \equiv \int_{i \in \mathcal{B}} \omega_i B \mathbb{E}_i[D] dF(i)$, equivalently Ω_S

- **Sufficient statistics**
 1. Beliefs (Pigovian principle)
 2. Equilibrium portfolio derivatives (drop out with symmetry)

- Alternative implementation: volume as intermediate target
- Measurement
 - *Recovering heterogenous beliefs*, Borovicka/Davila (in progress)
Numerical examples

1. **First Example**: Only disagreement trading
2. **Second Example**: All cases
Numerical examples

1. **First Example**: Only disagreement trading

2. **Second Example**: All cases

 - **Simplifications**
 - Identical risk aversion $A_i = 1$
 - Identical initial positions $X_{0i} = Q = 1$

 - **Trading motives**
 - [Non-fundamental] Different beliefs $E_i[D]$
 - [Fundamental] Different risk-sharing needs $Cov[E_{2i}, D]$
Example 1: Only disagreement trading

\[\mathbb{E} [D] = 100 \text{ and } \text{Var} [D] = 16 \]
Example 1: Only disagreement trading

\[\mathbb{E}[D] = 100 \text{ and } \text{Var}[D] = 16 \]

- Optimists
 \[\mathbb{E}_H[D] = 106 \quad \text{Cov}[E_{2i}, D] = 0 \quad \text{Optimistic Buyers (50\%)} \]

- Pessimists
 \[\mathbb{E}_L[D] = 96 \quad \text{Cov}[E_{2i}, D] = 0 \quad \text{Pessimistic Sellers (50\%)} \]
Example 1: Only non-fundamental trading - $\tau^* = 5.98\%$ - Gain 0.86%
Example 3: Optimists/Pessimists/Fundamental investors

\[\mathbb{E} [D] = 100 \text{ and } \operatorname{Var} [D] = 16 \]
Example 3: Optimists/Pessimists/Fundamental investors

\[\mathbb{E}[D] = 100 \text{ and } \text{Var}[D] = 16 \]

Optimists
\[\mathbb{E}_H[D] = 106 \]

Correct
\[\mathbb{E}[D] = 100 \]

Pessimists
\[\mathbb{E}_L[D] = 96 \]
Example 3: Optimists/Pessimists/Fundamental investors

$$\mathbb{E}[D] = 100$$ and $$\text{Var}[D] = 16$$

Optimists

$$\mathbb{E}_H[D] = 106$$

$$\text{Cov}[E_{2i}, D] = 0$$ Optimistic Buyers (30%)

Correct

$$\mathbb{E}[D] = 100$$

Pessimists

$$\mathbb{E}_L[D] = 96$$
Example 3: Optimists/Pessimists/Fundamental investors

\[\mathbb{E}[D] = 100 \text{ and } \text{Var}[D] = 16 \]

Optimists
\[\mathbb{E}_H[D] = 106 \]
\[\text{Cov}[E_{2i}, D] = 0 \text{ Optimistic Buyers (30\%)} \]

Correct
\[\mathbb{E}[D] = 100 \]

Pessimists
\[\mathbb{E}_L[D] = 96 \]
\[\text{Cov}[E_{2i}, D] = 0 \text{ Pessimistic Sellers (30\%)} \]
Example 3: Optimists/Pessimists/Fundamental investors

\[\mathbb{E} [D] = 100 \text{ and } \text{Var} [D] = 16 \]

Optimists
\[\mathbb{E}_H [D] = 106 \]
\[\text{Cov} [E_{2i}, D] = 0 \quad \text{Optimistic Buyers (30\%)} \]

Correct
\[\mathbb{E} [D] = 100 \]
\[\text{Cov} [E_{2i}, D] < 0 \quad \text{Correct Buyers (20\%)} \]

Pessimists
\[\mathbb{E}_L [D] = 96 \]
\[\text{Cov} [E_{2i}, D] = 0 \quad \text{Pessimistic Sellers (30\%)} \]
Example 3: Optimists/Pessimists/Fundamental investors

\[\mathbb{E}[D] = 100 \text{ and } \text{Var}[D] = 16 \]

- **Optimists**
 - \(\mathbb{E}_{H}[D] = 106 \)
 - \(\text{Cov}[E_{2i}, D] = 0 \) **Optimistic Buyers** (30%)
 - \(\text{Cov}[E_{2i}, D] < 0 \) **Correct Buyers** (20%)
 - \(\text{Cov}[E_{2i}, D] > 0 \) **Optimistic Sellers** (20%)

- **Correct**
 - \(\mathbb{E}[D] = 100 \)
 - \(\text{Cov}[E_{2i}, D] < 0 \) **Correct Buyers** (20%)

- **Pessimists**
 - \(\mathbb{E}_{L}[D] = 96 \)
 - \(\text{Cov}[E_{2i}, D] = 0 \) **Pessimistic Sellers** (30%)
Example 3: Optimists/Pessimists/Fundamental investors

\[\mathbb{E}[D] = 100 \quad \text{and} \quad \text{Var}[D] = 16 \]

- **Optimists**
 \[\mathbb{E}_H[D] = 106 \]
 - \(\text{Cov}[E_{2i}, D] = 0 \) **Optimistic Buyers** (30%)
 - \(\text{Cov}[E_{2i}, D] < 0 \) **Correct Buyers** (20%)
 - \(\text{Cov}[E_{2i}, D] > 0 \) **Optimistic Sellers** (20%)

- **Correct**
 \[\mathbb{E}[D] = 100 \]
 - \(\text{Cov}[E_{2i}, D] = 0 \) **Pessimistic Sellers** (30%)

- **Pessimists**
 \[\mathbb{E}_L[D] = 96 \]
 - \(\text{Cov}[E_{2i}, D] = 0 \) **Pessimistic Sellers** (30%)
Example 3: 35% Non-fundamental trading - $\tau^* = 2.01\%$ - Gain 0.11\%
Remarks

\[\tau^* = \frac{\int \mathbb{E}_i[D] \frac{dX_{1i}}{d\tau} dF(i)}{\int \text{sgn}(\Delta X_{1i}) \frac{dX_{1i}}{d\tau} dF(i)} = \frac{\Omega_B - \Omega_S}{2} \]

- **Remark 1:** Investors who stop trading are *inframarginal* for \(\tau^* \)
 - **Meaningful non-convexity**

- **Remark 2:** Harberger 64 revisited (money metric respecting beliefs)

- **Upper bound on welfare loss:**
 \[L(\tau) = 2 \tau P_1 \int_{i \in B} dX_{1i} d\tau dF(i) \]

- **Remark 3:** Allocation changes (volume) determine social welfare
 - Intuition: price changes are only redistributional

- **Remark 4:** Derivatives \(\frac{dX_{1i}}{d\tau} \) appear because of second-best problem

- **Diamond 73**
Remarks

\[\tau^* = \frac{\int \frac{\mathbb{E}_i[D]}{P_1} \frac{dX_{1i}}{d\tau} dF(i)}{\int \text{sgn}(\Delta X_{1i}) \frac{dX_{1i}}{d\tau} dF(i)} = \frac{\Omega_B - \Omega_S}{2} \]

- **Remark 1:** Investors who stop trading are *infra marginal* for \(\tau^*
 - **Meaningful non-convexity** [Figure]

- **Remark 2:** Harberger 64 revisited (money metric respecting beliefs)
 - Upper bound on welfare loss: \(\mathcal{L}(\tau) = 2\tau P_1 \int_{i \in \mathcal{B}} \frac{dX_{1i}}{d\tau} dF(i) \)
 - Change in volume

- **Remark 3:** Allocation changes (volume) determine social welfare
 - Intuition: price changes are only redistributional

- **Remark 4:** Derivatives \(\frac{dX_{1i}}{d\tau} \) appear because of second-best problem
 - Diamond 73
Remarks

\[
\tau^* = \frac{\int \mathbb{E}_i[D] \frac{dX_{1i}}{d\tau} dF(i)}{\int \text{sgn}(\Delta X_{1i}) \frac{dX_{1i}}{d\tau} dF(i)} = \frac{\Omega_B - \Omega_S}{2}
\]

- **Remark 1:** Investors who stop trading are *inframarginal* for \(\tau^*\)
 - Meaningful non-convexity

- **Remark 2:** Harberger 64 revisited (money metric respecting beliefs)
 - Upper bound on welfare loss: \(L(\tau) = 2\tau P_1 \int_{i \in B} \frac{dX_{1i}}{d\tau} dF(i)\)

- **Remark 3:** Allocation changes (volume) determine social welfare
 - Intuition: price changes are only redistributional

- **Remark 4:** Derivatives \(dX_{1i}/d\tau\) appear because of second-best problem
 - Diamond 73
Remarks

\[\tau^* = \frac{\int \mathbb{E}_i[D] \frac{dX_{1i}}{d\tau} dF(i)}{\int \text{sgn}(\Delta X_{1i}) \frac{dX_{1i}}{d\tau} dF(i)} = \frac{\Omega_B - \Omega_S}{2} \]

• **Remark 1:** Investors who stop trading are *inframarginal* for \(\tau^* \)
 • Meaningful non-convexity

• **Remark 2:** Harberger 64 revisited (money metric respecting beliefs)
 • Upper bound on welfare loss: \(\mathcal{L}(\tau) = 2\tau P_1 \int_{i \in B} \frac{dX_{1i}}{d\tau} dF(i) \)

• **Remark 3:** Allocation changes (volume) determine social welfare
 • Intuition: price changes are only redistributional

• **Remark 4:** Derivatives \(\frac{dX_{1i}}{d\tau} \) appear because of second-best problem
 • Diamond 73
Extensions

1. **Multiple \((J)\) risky assets:** weighted average

\[
\tau^* = \sum_{j=1}^{J} \omega_j \tau_j^*
\]
Extensions

1. **Multiple (J) risky assets:** weighted average

 $$\tau^* = \sum_{j=1}^{J} \omega_j \tau_j^*$$

2. **Preexisting trading costs:** τ^* formula unchanged, as long as they are a compensation for the use of economic resources
Extensions

1. **Multiple \((J) \) risky assets**: weighted average
\[
\tau^* = \sum_{j=1}^{J} \omega_j \tau_j^*
\]

2. **Preexisting trading costs**: \(\tau^* \) formula unchanged, as long as they are a compensation for the use of economic resources

3. **Portfolio constraints**: modeled as \(g(P_1) \leq X_{1i} \leq \bar{g}(P_1) \)
 - \(\tau^* \) formula unchanged if price independent (**short-sale constraints**)
 - Corrected formula if price dependent (**borrowing constraints**)
1. **Multiple \((J)\) risky assets:** weighted average

\[\tau^* = \sum_{j=1}^{J} \omega_j \tau_j^*\]

2. **Preexisting trading costs:** \(\tau^*\) formula unchanged, as long as they are a compensation for the use of economic resources

3. **Portfolio constraints:** modeled as \(g(P_1) \leq X_{1i} \leq \bar{g}(P_1)\)
 - \(\tau^*\) formula unchanged if price independent (**short-sale constraints**)
 - Corrected formula if price dependent (**borrowing constraints**)

4. **Asymmetric taxes/Multiple instruments:**
 - First-best requires investor specific taxes:

\[\tau_i^* = \text{sgn} (\Delta X_{1i}) \frac{F - \mathbb{E}_i [D]}{P_1}, \quad F \in \mathbb{R}\]
Extension: Dynamics

- **General dynamic model**: arbitrary utility/general disagreement
Extension: Dynamics

- General dynamic model: arbitrary utility/general disagreement
 1. Approximation
 - With constant marginal utility, the optimal CARA + Normal tax is recovered (Arrow-Pratt)
Extension: Dynamics

- **General dynamic model**: arbitrary utility/general disagreement
 1. **Approximation**
 - With constant marginal utility, the optimal CARA+Normal tax is recovered (Arrow-Pratt)
 2. **High frequency investors are more affected**
 - Intuition: forward-looking behavior
 - Dynamics only modifies weights
2. **Production**: new first-order effect
 - Introduce producer who can vary S_{1k}
 - New decision: how many trees to plant
2. **Production**: new first-order effect
 - Introduce producer who can vary S_{1k}
 - New decision: how many trees to plant

\[
\int \left(\mathbb{E} [D] - \mathbb{E}_i [D] \right) \frac{dX_{1i}}{d\tau} dF (i) = - \text{Cov}_F \left[\mathbb{E}_i [D], \frac{dX_{1i}}{d\tau} \right] \quad + \quad \left(\mathbb{E} [D] - \mathbb{E}_F \mathbb{E}_i [D] \right) \frac{dS_{1k}}{d\tau}
\]

- Belief dispersion
- Aggregate distortion \times Investment response
2. **Production**: new first-order effect

- Introduce producer who can vary S_{1k}
- New decision: how many trees to plant

$$
\int (\mathbb{E}[D] - \mathbb{E}_i[D]) \frac{dX_{1i}}{d\tau} dF(i) = - \text{Cov}_F \left[\mathbb{E}_i[D], \frac{dX_{1i}}{d\tau} \right] + (\mathbb{E}[D] - \mathbb{E}_F[\mathbb{E}_i[D]]) \frac{dS_{1k}}{d\tau}
$$

Belief dispersion

Aggregate distortion \times Investment response
2. **Production**: new first-order effect
 - Introduce producer who can vary S_{1k}
 - New decision: how many trees to plant

\[
\int (\mathbb{E}[D] - \mathbb{E}_i[D]) \frac{dX_{1i}}{d\tau} dF(i) = -\text{Cov}_F \left[\mathbb{E}_i[D], \frac{dX_{1i}}{d\tau} \right] + (\mathbb{E}[D] - \mathbb{E}_F[\mathbb{E}_i[D]]) \frac{dS_{1k}}{d\tau}
\]

Belief dispersion

Aggregate distortion \times

Investment response
Broader price-theoretic agenda in Macro-Finance

• Three examples
 1. Optimal Bankruptcy Exemptions
 • How much should bankrupt borrowers keep?
 2. Optimal Deposit Insurance
 • What is the optimal level of deposit insurance coverage?
 3. Fire Sales Externalities
 • Which variables determine welfare losses associated with price changes in economies with financial frictions?
Conclusion

• **This paper:** microfounded welfare analysis of FTT
 • Different welfare effects on fundamental vs non-fundamental trading
 • Irrelevance of planner’s belief
Conclusion

- **This paper:** microfounded welfare analysis of FTT
 - Different welfare effects on fundamental vs non-fundamental trading
 - Irrelevance of planner’s belief

- **Practical implications:**
 1. **Belief dispersion:** force towards **positive tax**
 2. With **production:** wrong average beliefs needed
1. **Tobin Tax:**
 - **Proposals:** Tobin 72/78, Summers-Summers 89, Stiglitz 89
 - **Empirical:** Campbell-Froot 94, Habermeier-Kirilenko 03
 - **Theory:** Subrahmanyam 98, Dow-Rahi 00, Buss et al 14, Adam et al 14

3. **Belief Disagreement:** Lintner 69, Miller 77, Harrison-Kreps 78, Scheinkman-Xiong 03, Hong-Stein 03, Geanakoplos 09, Simsek 12,13

4. **Behavioral Welfare Economics:**
 - **Belief Disagreement:** Morris 95, *Brunnermeier-Simsek-Xiong 12*, Blume-Cogley-Easley-Sargent-Tsyrennikov 13
 - **O’Donoghue-Rabin 06, Bernheim-Rangel 11**

5. **Information Diffusion/Acquisition:** Grossman-Stiglitz 80, Diamond-Verrechia 81, many others
Identifying beliefs - Volume as intermediate target

• Volume decomposition:

\[\int_{i \in B} \Delta X_{1i} dF (i) = \Theta_F + \Theta_{NF} - \Theta_T, \]

- Volume
- Fundamental
- Non-fundamental
- Tax induced reduction
Identifying beliefs - Volume as intermediate target

• Volume decomposition:

\[
\int_{i \in B} \Delta X_1 i dF(i) = \underbrace{\Theta_F}_{\text{Volume}} + \underbrace{\Theta_{NF}}_{\text{Fundamental}} - \underbrace{\Theta_{\tau}}_{\text{Non-fundamental}} - \underbrace{\Theta_{\tau}}_{\text{Tax induced reduction}}
\]

• Alternative implementation (conditions needed):

\[
\Phi_{NF} = \Phi_{\tau} \iff \tau^*
\]
Identifying beliefs - Volume as intermediate target

- Volume decomposition:

\[\int_{i \in B} \Delta X_1 dF(i) = \Theta_F + \Theta_{NF} - \Theta_{\tau} \]

- Fundamental, Non-fundamental, Tax induced reduction

- Alternative implementation (conditions needed):

\[\Phi_{NF} = \Phi_{\tau} \iff \tau^* \]
Identifying beliefs - Volume as intermediate target

- Fundamental

\[
2\Omega_F = \int_S \left(\frac{\text{Cov}[E_{2i}, D]}{\text{Var}[D]} + X_{0i} + \frac{P_1}{A_i \text{Var}[D]} \right) dF(i)
- \int_B \left(\frac{\text{Cov}[E_{2i}, D]}{\text{Var}[D]} + X_{0i} + \frac{P_1}{A_i \text{Var}[D]} \right) dF(i)
\]
Identifying beliefs - Volume as intermediate target

- **Fundamental**
 \[
 2\Omega_F = \int_S \left(\frac{\text{Cov}[E_{2i}, D]}{\text{Var}[D]} + X_{0i} + \frac{P_1}{A_i \text{Var}[D]} \right) dF(i)
 \]
 \[
 - \int_B \left(\frac{\text{Cov}[E_{2i}, D]}{\text{Var}[D]} + X_{0i} + \frac{P_1}{A_i \text{Var}[D]} \right) dF(i)
 \]

- **Non-Fundamental**
 \[
 2\Omega_{NF} = \int_B \frac{\mathbb{E}_i[D]}{A_i \text{Var}[D]} dF(i) - \int_S \frac{\mathbb{E}_i[D]}{A_i \text{Var}[D]} dF(i)
 \]
Identifying beliefs - Volume as intermediate target

- **Fundamental**

\[
2\Omega_F = \int_S \left(\frac{\text{Cov} [E_{2i}, D]}{\text{Var} [D]} + X_0 + \frac{P_1}{A_i \text{Var} [D]} \right) dF (i) \\
- \int_B \left(\frac{\text{Cov} [E_{2i}, D]}{\text{Var} [D]} + X_0 + \frac{P_1}{A_i \text{Var} [D]} \right) dF (i)
\]

- **Non-Fundamental**

\[
2\Omega_{NF} = \int_B \frac{\mathbb{E}_i [D]}{A_i \text{Var} [D]} dF (i) - \int_S \frac{\mathbb{E}_i [D]}{A_i \text{Var} [D]} dF (i)
\]

- **Tax**

\[
2\Omega_{\tau} = \tau \left(\int_B \frac{P_1}{A_i \text{Var} [D]} dF (i) + \int_S \frac{P_1}{A_i \text{Var} [D]} dF (i) \right)
\]
General dynamic model

Environment

• Investors solve

\[
\max_{C_{ti}, X_{ti}, Y_{ti}} \mathbb{E}_i \left[\sum_{t=1}^{T} \beta^{t-1} U_i (C_{ti}) \right]
\]
General dynamic model

Environment

- Investors solve

\[
\max_{C_{ti}, X_{ti}, Y_{ti}} \mathbb{E}_i \left[\sum_{t=1}^{T} \beta^{t-1} U_i (C_{ti}) \right]
\]

- Subject to

\[
C_{ti} = E_{ti} + X_{t-1i} (P_t + D_t) - X_{ti} P_t - \tau P_t |\Delta X_{ti}| + T_{ti} + RY_{t-1i} - Y_{ti}
\]

Beliefs:

- \(Z_{ti}\) ≡ Radon-Nikodym at each node/state
 - Can be stochastic but cannot depend on endogenous variables
 - \(E_{ti}\) and \(D_t\) arbitrary distributions

Planner

- Single linear tax - Commitment
 - No need to solve (hard) problem
General dynamic model

Environment

• Investors solve

\[
\max_{C_{ti}, X_{ti}, Y_{ti}} \mathbb{E}_i \left[\sum_{t=1}^{T} \beta^{t-1} U_i (C_{ti}) \right]
\]

• Subject to

\[
C_{ti} = E_{ti} + X_{t-1i} (P_t + D_t) - X_{ti} P_t - \tau P_t |\Delta X_{ti}| + T_{ti} + RY_{t-1i} - Y_{ti}
\]

• Beliefs: \(Z_{ti} \equiv \text{Radon-Nikodym at each node/state} \)
 • Can be stochastic but cannot depend on endogenous variables
General dynamic model

Environment

• Investors solve

$$\max_{C_{ti}, X_{ti}, Y_{ti}} \mathbb{E}_i \left[\sum_{t=1}^{T} \beta^{t-1} U_i (C_{ti}) \right]$$

• Subject to

$$C_{ti} = E_{ti} + X_{t-1i} (P_t + D_t) - X_{ti} P_t - \tau P_t |\Delta X_{ti}| + T_{ti} + RY_{t-1i} - Y_{ti}$$

• Beliefs: $Z_{ti} \equiv$ Radon-Nikodym at each node/state
 • Can be stochastic but cannot depend on endogenous variables
 • E_{ti} and D_t arbitrary distributions
General dynamic model

Environment

- Investors solve

\[
\max_{C_{ti}, X_{ti}, Y_{ti}} \mathbb{E}_i \left[\sum_{t=1}^{T} \beta^{t-1} U_i (C_{ti}) \right]
\]

- Subject to

\[
C_{ti} = E_{ti} + X_{t-1i} (P_t + D_t) - X_{ti} P_t - \tau P_t |\Delta X_{ti}| + T_{ti} + RY_{t-1i} - Y_{ti}
\]

- Beliefs: \(Z_{ti} \equiv \) Radon-Nikodym at each node/state
 - Can be stochastic but cannot depend on endogenous variables
 - \(E_{ti} \) and \(D_t \) arbitrary distributions

Planner

- Single linear tax - Commitment
- No need to solve (hard) problem
General dynamic model: Three takeaways

1. **Approximation**: When marginal utilities are constant, the optimal CARA+Normal tax is recovered
General dynamic model: Three takeaways

1. **Approximation**: When marginal utilities are constant, the optimal CARA+Normal tax is recovered
 - Intuition: Arrow/Pratt approximation - Small risks
General dynamic model: Three takeaways

1. **Approximation**: When marginal utilities are constant, the optimal CARA+Normal tax is recovered

 - Intuition: Arrow/Pratt approximation - Small risks

\[
\tau^* = \frac{\mathbb{E}\left[\sum_{t=1}^{T} \beta^t \int \mathbb{E}_{ti} \left[D_{t+1} + P_{t+1} \right] \frac{dX_{ti}}{d\tau} dF (i) \right]}{\mathbb{E}\left[\sum_{t=1}^{T} \beta^t \int P_t \text{sgn} (\Delta X_{ti}) (1 - \kappa_{ti}) \frac{dX_{ti}}{d\tau} dF (i) \right]}
\]
1. **Approximation**: When marginal utilities are constant, the optimal CARA+Normal tax is recovered

- Intuition: Arrow/Pratt approximation - Small risks

\[
\tau^* = \frac{\mathbb{E} \left[\sum_{t=1}^{T} \beta^t \int \mathbb{E}_{t^i} \left[D_{t+1} + P_{t+1} \right] \frac{dX_{t^i}}{d\tau} dF (i) \right]}{\mathbb{E} \left[\sum_{t=1}^{T} \beta^t \int P_t \text{sgn} (\Delta X_{t^i}) (1 - \kappa_{t^i}) \frac{dX_{t^i}}{d\tau} dF (i) \right]}
\]
1. **Approximation**: When marginal utilities are constant, the optimal CARA+Normal tax is recovered

 - Intuition: Arrow/Pratt approximation - Small risks

\[
\tau^* = \frac{\mathbb{E} \left[\sum_{t=1}^{T} \beta^t \int \mathbb{E}_{t_i} \left[D_{t+1} + P_{t+1} \right] \frac{dX_{ti}}{d\tau} \ dF \ (i) \right]}{\mathbb{E} \left[\sum_{t=1}^{T} \beta^t \int P_t \ \text{sgn} (\Delta X_{ti}) (1 - \kappa_{ti}) \frac{dX_{ti}}{d\tau} \ dF \ (i) \right]}
\]
General dynamic model: Three takeaways

1. **Approximation**: When marginal utilities are constant, the optimal CARA+Normal tax is recovered

 - Intuition: Arrow/Pratt approximation - Small risks

 \[\tau^* = \frac{\mathbb{E} \left[\sum_{t=1}^{T} \beta^t \int \mathbb{E}_{ti} \left[D_{t+1} + P_{t+1} \right] \frac{dX_{ti}}{d\tau} dF (i) \right]}{\mathbb{E} \left[\sum_{t=1}^{T} \beta^t \int P_t \text{sgn} (\Delta X_{ti}) \left(1 - \kappa_{ti} \right) \frac{dX_{ti}}{d\tau} dF (i) \right]} \]

 - Truth is needed to weight nodes
1. **Approximation**: When marginal utilities are constant, the optimal CARA+Normal tax is recovered

- Intuition: Arrow/Pratt approximation - Small risks

\[\tau^* = \frac{\mathbb{E} \left[\sum_{t=1}^{T} \beta^t \int \mathbb{E}_t \left[D_{t+1} + P_{t+1} \right] \frac{dX_{ti}}{d\tau} dF(i) \right]}{\mathbb{E} \left[\sum_{t=1}^{T} \beta^t \int P_t \text{sgn} (\Delta X_{ti}) (1 - \kappa_{ti}) \frac{dX_{ti}}{d\tau} dF(i) \right]} \]

- \(\kappa_{ti} \equiv \mathbb{E}_t \left[\frac{P_{t+1}}{P_t} \text{sgn} (\Delta X_{ti}) \text{sgn} (\Delta X_{t+1i}) \right] \) (Forward looking)
General dynamic model: Three takeaways

1. **Approximation**: When marginal utilities are constant, the optimal CARA+Normal tax is recovered
 - Intuition: Arrow/Pratt approximation - Small risks
General dynamic model: Three takeaways

1. **Approximation**: When marginal utilities are constant, the optimal CARA+Normal tax is recovered
 - Intuition: Arrow/Pratt approximation - Small risks

2. **Lower tax with flip-floppers**: the optimal tax can be written as

 \[
 \tau^* = \sum_{t=1}^{T} \mathbb{E} [w_t f_t \tau_t^*]
 \]
General dynamic model: Three takeaways

1. **Approximation**: When marginal utilities are constant, the optimal CARA+Normal tax is recovered
 - **Intuition**: Arrow/Pratt approximation - Small risks

2. **Lower tax with flip-floppers**: the optimal tax can be written as

 \[\tau^* = \sum_{t=1}^{T} \mathbb{E}[w_t f_t \tau_t^*] \]

 - \(\tau_t^* \equiv \) Static tax - Weights \(\sum_{t=1}^{T} \mathbb{E}[w_t] = 1 - f_t = \frac{1}{2} \) if Buy-and-Sell
General dynamic model: Three takeaways

1. **Approximation**: When marginal utilities are constant, the optimal CARA+Normal tax is recovered
 - Intuition: Arrow/Pratt approximation - Small risks

2. **Lower tax with flip-floppers**: the optimal tax can be written as

 \[\tau^* = \sum_{t=1}^{T} \mathbb{E} [w_t f_t \tau_t^*] \]

 - \(\tau_t^* \equiv \) Static tax - Weights \(\sum_{t=1}^{T} \mathbb{E} [w_t] = 1 - f_t = \frac{1}{2} \) if Buy-and-Sell
 - Intuition: tax more powerful with forward-looking investors
 - Larger tax needed to correct for persistent disagreement (ineffective for bubbles)
General dynamic model: Three takeaways

1. **Approximation**: When marginal utilities are constant, the optimal CARA+Normal tax is recovered
 - Intuition: Arrow/Pratt approximation - Small risks

2. **Lower tax with flip-floppers**: The optimal tax can be written as

 \[\tau_{\text{dynamic}} \approx \frac{1}{2} \tau_{\text{static}} \]
General dynamic model: Three takeaways

1. **Approximation**: When marginal utilities are constant, the optimal CARA+Normal tax is recovered
 - Intuition: Arrow/Pratt approximation - Small risks

2. **Lower tax with flip-floppers**: the optimal tax can be written as
 \[\tau^*_\text{dynamic} \approx \frac{1}{2} \tau^*_\text{static} \]

3. **Price covariance matters/not variance**
General dynamic model: Three takeaways

1. **Approximation**: When marginal utilities are constant, the optimal CARA+Normal tax is recovered
 - Intuition: Arrow/Pratt approximation - Small risks

2. **Lower tax with flip-floppers**: the optimal tax can be written as
 \[\tau_{\text{dynamic}} \approx \frac{1}{2} \tau_{\text{static}} \]

3. **Price covariance matters/not variance**
 - Tobin/Keynes - Price volatility - **Wrong** argument
 - Dynamic Harberger / Incomplete markets / Production
General dynamic model: Three takeaways

1. **Approximation**: When marginal utilities are constant, the optimal CARA+Normal tax is recovered
 - Intuition: Arrow/Pratt approximation - Small risks

2. **Lower tax with flip-floppers**: the optimal tax can be written as
 \[
 \tau^*_{\text{dynamic}} \approx \frac{1}{2} \tau^*_{\text{static}}
 \]

3. **Price covariance matters/not variance**
Three takeaways: covariance

3. Price covariance matters/not variance
Three takeaways: covariance

3. **Price covariance matters/not variance**
 - Tobin/Keynes - Price volatility - **Wrong** argument

\[\tau^* = \sum_{t=1}^{T} \mathbb{E}\left[\mathbb{E}\left[Z_i U'_i(C_t) \Delta X_t \right] \right] \frac{dP_t}{d\tau} \]

\[\tau^* \text{ is positive when } \text{Cov\left[\text{Cov}\left[F_i Z_i U'_i(C_t), \Delta X_t \right] dP_t d\tau \right] < 0 \]

Hard to disentangle insurance from redistribution
Three takeaways: covariance

3. Price covariance matters/not variance

- Tobin/Keynes - Price volatility - \textbf{Wrong} argument
- Incomplete markets
- Dynamic Harberger - Assume $\lambda_i = 1$ and $\beta = 1$

$$
\tau^* = \frac{\sum_{t=1}^{T} \mathbb{E} \left[\mathbb{E}_F \left[Z_i U_i' (C_{ti}) \Delta X_{ti} \right] \frac{dP_t}{d\tau} \right]}{\sum_{t=1}^{T} \mathbb{E} \left[\mathbb{E}_F \left[\int \xi_{ti} \frac{dX_{ti}}{d\tau} \right] \right]}
$$
Three takeaways: covariance

3. Price covariance matters/not variance

- Tobin/Keynes - Price volatility - **Wrong** argument
- Incomplete markets
- Dynamic Harberger - Assume $\lambda_i = 1$ and $\beta = 1$

$$
\tau^* = \frac{\sum_{t=1}^{T} \mathbb{E} \left[\mathbb{E}_F \left[Z_i U'_i (C_{ti}) \Delta X_{ti} \right] \frac{dP_t}{d\tau} \right]}{\sum_{t=1}^{T} \mathbb{E} \left[\mathbb{E}_F \left[\int \xi_{ti} \frac{dX_{ti}}{d\tau} \right] \right]}
$$

- τ^* is positive when

$$
\text{Cov} \left[\text{Cov}_F \left[Z_i U'_i (C_{ti}), \Delta X_{ti} \right], \frac{dP_t}{d\tau} \right] < 0
$$
Three takeaways: covariance

3. Price covariance matters/not variance

- Tobin/Keynes - Price volatility - **Wrong** argument
- Incomplete markets
- Dynamic Harberger - Assume $\lambda_i = 1$ and $\beta = 1$

$$
\tau^* = \frac{\sum_{t=1}^{T} E \left[E_F \left[Z_i u_i' (C_{ti}) \Delta X_{ti} \right] \frac{dP_t}{d\tau} \right]}{\sum_{t=1}^{T} E \left[E_F \left[\int \xi_{ti} \frac{dX_{ti}}{d\tau} \right] \right]}
$$

- τ^* is positive when

$$
\text{Cov} \left[\text{Cov}_F \left[Z_i u_i' (C_{ti}) , \Delta X_{ti} \right] , \frac{dP_t}{d\tau} \right] < 0
$$

- Hard to disentangle insurance from redistribution
Production (q-theory)

- **Producers** - indexed by k

\[
\text{Output: } D(Q + S_1^k)
\]

\[
\text{Solve max } C_1^k, C_2^k, S_1^k \quad \text{s.t.} \quad C_1^k + C_2^k = E_1^k + E_2^k + P_s S_1^k - \Phi(S_1^k)
\]

\[
\text{Production} \quad \text{Optimality conditions}
\]

\[
U_k'(C_1^k) = E[U_k'(C_2^k)]
\]

\[
\text{Euler} \quad P_s = \Phi'(S_1^k)
\]

Supply

\[
\text{Social Welfare} \quad V(\tau) = \int \lambda_i V_i dF(i) + \lambda_k V_k dV_k d\tau = E[U_k'(C_2^k)] dP_1 d\tau S_1^k
\]

\[
\text{Only terms-of-trade}
\]
Production (q-theory)

- **Producers** - indexed by k
 - Produce shares (trees) at a convex cost: $\Phi(S_{1k})$
Production (q-theory)

- **Producers** - indexed by k
 - Produce shares (trees) at a convex cost: $\Phi(S_{1k})$
 - Output: $D(Q + S_{1k})$
Production (q-theory)

- **Producers** - indexed by k
 - Produce shares (trees) at a convex cost: $\Phi(S_{1k})$
 - Output: $D(Q + S_{1k})$
 - Solve
 \[
 \max_{C_{1k}, C_{2k}, S_{1k}} U_k(C_{1k}) + \mathbb{E}[U_k(C_{2k})]
 \]
Production (q-theory)

- **Producers** - indexed by \(k \)
 - Produce shares (trees) at a convex cost: \(\Phi (S_{1k}) \)
 - Output: \(D (Q + S_{1k}) \)
 - Solve

 \[
 \max_{C_{1k}, C_{2k}, S_{1k}} U_k (C_{1k}) + \mathbb{E} [U_k (C_{2k})]
 \]

 \[
 \text{s.t. } C_{1k} + C_{2k} = E_{1k} + E_{2k} + P^s_{1} S_{1k} - \Phi (S_{1k})
 \]

- **Supply**
 - Social Welfare

 \[
 V (\tau) = \int \lambda_i V_i dF (i) + \lambda_k V_k dV_k d\tau = \mathbb{E} [U_k (C_{2k})] dP^1 d\tau S_{1k}
 \]

- **Only terms-of-trade
Production (q-theory)

- **Producers** - indexed by k
 - Produce shares (trees) at a convex cost: $\Phi(S_{1k})$
 - Output: $D(Q + S_{1k})$
 - Solve
 \[
 \max_{C_{1k}, C_{2k}, S_{1k}} \quad U_k(C_{1k}) + \mathbb{E}[U_k(C_{2k})]
 \]
 \[\text{s.t. } C_{1k} + C_{2k} = E_{1k} + E_{2k} + P_s S_{1k} - \Phi(S_{1k})\]

- **Optimality conditions**
 \[U'_k(C_{1k}) = \mathbb{E}[U'_k(C_{2k})] \quad \text{Euler} \]
 \[P_s = \Phi'(S_{1k}) \quad \text{Supply} \]
Production (q-theory)

- **Producers** - indexed by k
 - Produce shares (trees) at a convex cost: $\Phi(S_{1k})$
 - Output: $D(Q + S_{1k})$
 - Solve

\[
\max_{C_{1k}, C_{2k}, S_{1k}} U_k(C_{1k}) + \mathbb{E}[U_k(C_{2k})]
\]

\[
\text{s.t. } C_{1k} + C_{2k} = E_{1k} + E_{2k} + P_1S_{1k} - \Phi(S_{1k})
\]

- Optimality conditions
 - $U'_k(C_{1k}) = \mathbb{E}[U'_k(C_{2k})]$ **Euler**
 - $P_1^s = \Phi'(S_{1k})$ **Supply**

- Social Welfare
 \[
 V(\tau) = \int \lambda_i V_i dF(i) + \lambda_k V_k
 \]
Production (q-theory)

- **Producers** - indexed by \(k \)
 - Produce shares (trees) at a convex cost: \(\Phi (S_{1k}) \)
 - Output: \(D (Q + S_{1k}) \)
 - Solve

\[
\max_{C_{1k}, C_{2k}, S_{1k}} U_k (C_{1k}) + \mathbb{E} [U_k (C_{2k})]
\]

\[
\text{s.t. } C_{1k} + C_{2k} = E_{1k} + E_{2k} + P_1^s S_{1k} - \Phi (S_{1k})
\]

- **Optimality conditions**

\[
U_k' (C_{1k}) = \mathbb{E} [U_k' (C_{2k})]
\]

\[
P_1^s = \Phi' (S_{1k})
\]

- **Supply**

\[
V (\tau) = \int \lambda_i V_i dF (i) + \lambda_k V_k
\]

\[
\frac{dV_k}{d\tau} = \mathbb{E} [U_k' (C_{2k})] \frac{dP_1}{d\tau} S_{1k}
\]
Production (q-theory)

- **Producers** - indexed by k
 - Produce shares (trees) at a convex cost: $\Phi(S_{1k})$
 - Output: $D(Q + S_{1k})$
 - Solve

$$\max_{C_{1k},C_{2k},S_{1k}} U_k(C_{1k}) + \mathbb{E}[U_k(C_{2k})]$$

s.t. $C_{1k} + C_{2k} = E_{1k} + E_{2k} + P_1^S S_{1k} - \Phi(S_{1k})$

- **Optimality conditions**
 - $U_k'(C_{1k}) = \mathbb{E}[U_k'(C_{2k})]$ Euler
 - $P_1^S = \Phi'(S_{1k})$ Supply

- **Social Welfare**

$$V(\tau) = \int \lambda_i V_i dF(i) + \lambda_k V_k$$

$$\frac{dV_k}{d\tau} = \mathbb{E}[U_k'(C_{2k})] \frac{dP_1^1}{d\tau} S_{1k}$$

- **Only terms-of-trade**
Production

- Optimal tax under [NR]

\[
\tau^* = \frac{\int (\mathbb{E}[D] - \mathbb{E}_i[D]) \frac{dX_{1i}}{d\tau} dF(i)}{-P_1 \int \text{sgn}(\Delta X_{1i}) \frac{dX_{1i}}{d\tau} dF(i)}
\]
Production

- Optimal tax under [NR]

\[\tau^* = \frac{\int (\mathbb{E}[D] - \mathbb{E}_i[D]) \frac{dX_{1i}}{d\tau} dF(i)}{-P_1 \int \text{sgn}(\Delta X_{1i}) \frac{dX_{1i}}{d\tau} dF(i)} \]

- \[\int \frac{dX_{1i}}{d\tau} dF(i) = \frac{dS_{1k}}{d\tau} \geq 0 \], exchange economy \[\frac{dS_{1k}}{d\tau} = 0 \]
Production

- Optimal tax under [NR]

\[\tau^* = \int (\mathbb{E}[D] - \mathbb{E}_i[D]) \frac{dX_{1i}}{d\tau} dF(i) \]

- Numerator (first-order effects)

\[\int (\mathbb{E}[D] - \mathbb{E}_i[D]) \frac{dX_{1i}}{d\tau} dF(i) = -\text{Cov}_F \left[\mathbb{E}_i[D], \frac{dX_{1i}}{d\tau} \right] + (\mathbb{E}[D] - \mathbb{E}_F[\mathbb{E}_i[D]]) \frac{dS_{1k}}{d\tau} \]

Belief dispersion

Aggregate distortion \times

Investment response
Production

• Optimal tax under [NR]

$$\tau^* = \int (\mathbb{E} [D] - \mathbb{E}_i [D]) \frac{dX_{1i}}{d\tau} dF (i) - P_1 \int \text{sgn} (\Delta X_{1i}) \frac{dX_{1i}}{d\tau} dF (i)$$

• Numerator (first-order effects)

$$\int (\mathbb{E} [D] - \mathbb{E}_i [D]) \frac{dX_{1i}}{d\tau} dF (i) = - \text{Cov}_F \left[\mathbb{E}_i [D], \frac{dX_{1i}}{d\tau} \right] + (\mathbb{E} [D] - \mathbb{E}_F [\mathbb{E}_i [D]]) \frac{dS_{1k}}{d\tau}$$

Belief dispersion
Aggregated distortion \times
Investment response
Production

• Optimal tax under [NR]

\[\tau^* = \int (\mathbb{E}[D] - \mathbb{E}_i[D]) \frac{dX_{1i}}{d\tau} dF(i) \]
\[- P_1 \int \text{sgn}(\Delta X_{1i}) \frac{dX_{1i}}{d\tau} dF(i) \]

• Numerator (first-order effects)

\[\int (\mathbb{E}[D] - \mathbb{E}_i[D]) \frac{dX_{1i}}{d\tau} dF(i) = - \text{Cov}_F \left[\mathbb{E}_i[D], \frac{dX_{1i}}{d\tau} \right] + \left(\mathbb{E}[D] - \mathbb{E}_F[\mathbb{E}_i[D]] \right) \frac{dS_{1k}}{d\tau} \]

Belief dispersion

 Aggregate distortion × Investment response
Production

- Optimal tax under [NR]

\[
\tau^* = \frac{\int (E[D] - E_i[D]) \frac{dX_{1i}}{d\tau} dF(i)}{-P_1 \int \text{sgn}(\Delta X_{1i}) \frac{dX_{1i}}{d\tau} dF(i)}
\]

- Numerator (first-order effects)

\[
\int (E[D] - E_i[D]) \frac{dX_{1i}}{d\tau} dF(i) = -\text{Cov}_F \left[E_i[D], \frac{dX_{1i}}{d\tau} \right] + (E[D] - E_F[E_i[D]]) \frac{dS_{1k}}{d\tau}
\]

 - Belief dispersion
 - Aggregate distortion \times Investment response

- A decomposition

\[
\tau^* = \omega \tau^*_{\text{exchange}} + (1 - \omega) \tau^*_{\text{production}},
\]
Production

- Optimal tax under [NR]

\[\tau^{*} = \frac{\int (\mathbb{E}[D] - \mathbb{E}_{i}[D]) \frac{dX_{1i}}{d\tau} dF(i) - P_{1} \int \text{sgn}(\Delta X_{1i}) \frac{dX_{1i}}{d\tau} dF(i)}{\mathbb{Cov}_{F}[\mathbb{E}_{i}[D], \frac{dX_{1i}}{d\tau}]} + (\mathbb{E}[D] - \mathbb{E}_{F}[\mathbb{E}_{i}[D]]) \frac{dS_{1k}}{d\tau} \]

• Numerator (first-order effects)

\[\int (\mathbb{E}[D] - \mathbb{E}_{i}[D]) \frac{dX_{1i}}{d\tau} dF(i) = -\mathbb{Cov}_{F}[\mathbb{E}_{i}[D], \frac{dX_{1i}}{d\tau}] + (\mathbb{E}[D] - \mathbb{E}_{F}[\mathbb{E}_{i}[D]]) \frac{dS_{1k}}{d\tau} \]

- A decomposition

\[\tau^{*} = \omega \tau_{\text{exchange}}^{*} + (1 - \omega) \tau_{\text{production}}^{*} \]

- Sign of \(\tau_{\text{production}}^{*} \)?
Production

- Optimal tax under [NR]

\[\tau^* = \frac{\int (E[D] - E_i[D]) \frac{dX_{1i}}{d\tau} dF(i)}{-P_1 \int \text{sgn} (\Delta X_{1i}) \frac{dX_{1i}}{d\tau} dF(i)} \]

- Numerator (first-order effects)

\[\int (E[D] - E_i[D]) \frac{dX_{1i}}{d\tau} dF(i) = -\text{Cov}_F \left[E_i[D], \frac{dX_{1i}}{d\tau} \right] + (E[D] - E_F[E_i[D]]) \frac{dS_{1k}}{d\tau} \]

Belief dispersion

Aggregate distortion \times Investment response

- A decomposition

\[\tau^* = \omega \tau^*_\text{exchange} + (1 - \omega) \tau^*_\text{production} \]

- Sign of \(\tau^*_\text{production} \)? Perhaps positive \(\Rightarrow \tau^* > 0 \)
Production

- Optimal tax under $[NR]$

\[\tau^* = \int (\mathbb{E}[D] - \mathbb{E}_i[D]) \frac{dX_{1i}}{d\tau} dF(i) \]

\[- P_1 \int \text{sgn} (\Delta X_{1i}) \frac{dX_{1i}}{d\tau} dF(i) \]

- Numerator (first-order effects)

\[\int (\mathbb{E}[D] - \mathbb{E}_i[D]) \frac{dX_{1i}}{d\tau} dF(i) = - \text{Cov}_F \left[\mathbb{E}_i[D], \frac{dX_{1i}}{d\tau} \right] + (\mathbb{E}[D] - \mathbb{E}_F[\mathbb{E}_i[D]]) \frac{dS_{1k}}{d\tau} \]

 - Belief dispersion
 - Aggregate distortion \times Investment response

- A decomposition

\[\tau^* = \omega \tau^*_\text{exchange} + (1 - \omega) \tau^*_\text{production} \]

- Sign of $\tau^*_\text{production}$? Perhaps positive $\Rightarrow \tau^* > 0$

\[\text{sgn} (\tau^*_\text{production}) = \text{sgn} \left(\left(\hat{P}_1 - P_1 \right) \frac{dP_1}{d\tau} \right) \]
Production

- Optimal tax under [NR]

\[\tau^* = \frac{\int (\mathbb{E}[D] - \mathbb{E}_i[D]) \frac{dX_{1i}}{d\tau} dF(i)}{-P_1 \int \text{sgn}(\Delta X_{1i}) \frac{dX_{1i}}{d\tau} dF(i)} \]

- Numerator (first-order effects)

\[\int (\mathbb{E}[D] - \mathbb{E}_i[D]) \frac{dX_{1i}}{d\tau} dF(i) = -\text{Cov}_F \left[\mathbb{E}_i[D], \frac{dX_{1i}}{d\tau} \right] + (\mathbb{E}[D] - \mathbb{E}_F[\mathbb{E}_i[D]]) \frac{dS_{1k}}{d\tau} \]

 - Belief dispersion
 - Aggregate distortion \times Investment response

- A decomposition

\[\tau^* = \omega \tau_{\text{exchange}}^* + (1 - \omega) \tau_{\text{production}}^* \]

- Sign of \(\tau_{\text{production}}^* \)? \textbf{Perhaps positive} \(\Rightarrow \tau^* > 0 \)

\[\text{sgn}(\tau_{\text{production}}^*) = \text{sgn} \left(\left(\hat{P}_1 - P_1 \right) \frac{dP_1}{d\tau} \right) \]
Production

- Optimal tax under [NR]

\[
\tau^* = \frac{\int (\mathbb{E} [D] - \mathbb{E}_i [D]) \frac{dX_{1i}}{d\tau} dF (i)}{-P_1 \int \text{sgn} (\Delta X_{1i}) \frac{dX_{1i}}{d\tau} dF (i)} - P_1 \int \text{sgn} (\Delta X_{1i}) \frac{dX_{1i}}{d\tau} dF (i)
\]

- Numerator (first-order effects)

\[
\int (\mathbb{E} [D] - \mathbb{E}_i [D]) \frac{dX_{1i}}{d\tau} dF (i) = -\text{Cov}_F \left[\mathbb{E}_i [D], \frac{dX_{1i}}{d\tau} \right] + (\mathbb{E} [D] - \mathbb{E}_F [\mathbb{E}_i [D]]) \frac{dS_{1k}}{d\tau}
\]

Belief dispersion

Aggregate distortion \times Investment response

- A decomposition

\[
\tau^* = \omega \tau^*_\text{exchange} + (1 - \omega) \tau^*_\text{production},
\]

- Sign of \(\tau^*_\text{production}\)?

Perhaps positive \(\Rightarrow \tau^* > 0\)

\[
\text{sgn} (\tau^*_\text{production}) = \text{sgn} \left(\left(\hat{P}_1 - P_1 \right) \frac{dP_1}{d\tau} \right)
\]
Production

- Optimal tax under [NR]

\[
\tau^* = \frac{\int (\mathbb{E}[D] - \mathbb{E}_i[D]) \frac{dX_{1i}}{d\tau} dF(i)}{-P_1 \int \text{sgn}(\Delta X_{1i}) \frac{dX_{1i}}{d\tau} dF(i)}
\]

- Numerator (first-order effects)

\[
\int (\mathbb{E}[D] - \mathbb{E}_i[D]) \frac{dX_{1i}}{d\tau} dF(i) = -\text{Cov}_F \left[\mathbb{E}_i[D], \frac{dX_{1i}}{d\tau} \right] + (\mathbb{E}[D] - \mathbb{E}_F[\mathbb{E}_i[D]]) \frac{dS_{1k}}{d\tau}
\]

- A decomposition

\[
\tau^* = \omega \tau^*_\text{exchange} + (1 - \omega) \tau^*_\text{production}
\]

- Sign of \(\tau^*_\text{production} \)? **Perhaps positive** \(\Rightarrow \tau^* > 0\)

\[
\text{sgn} \left(\tau^*_\text{production} \right) = \text{sgn} \left(\left(\hat{P}_1 - P_1 \right) \frac{dP_1}{d\tau} \right) > 0
\]
Hayekian production

- Environment
Hayekian production

- Environment
 - π_I Informed investors - Observe θ
Hayekian production

- Environment
 - π_I Informed investors - Observe θ
 - $\pi_U = 1 - \pi_I$ Uninformed investors - Do not update from prices
Hayekian production

- **Environment**
 - π_I Informed investors - Observe θ
 - $\pi_U = 1 - \pi_I$ Uninformed investors - Do not update from prices
 - Firm manager - Chooses production given prices

\[\Pi = \alpha + \theta + \beta(\theta^2 - (\theta - k^*)^2), \beta \geq 0\]

- **Optimal investment**
 \[k^* = \mathbb{E}[\theta | P_1]\]

- **Assumptions**
 1. Informed investors do not internalize effect in production
 2. Uninformed investors do not learn

There is no trade in equilibrium when $\theta(\tau) \leq \theta \leq \theta(\tau)$
Hayekian production

• Environment
 • π_I Informed investors - Observe θ
 • $\pi_U = 1 - \pi_I$ Uninformed investors - Do not update from prices
 • Firm manager - Chooses production given prices

• Dividend $\Pi = D + \theta + \beta \left(\theta^2 - (\theta - k^*)^2 \right)$, $\beta \geq 0$
Hayekian production

- **Environment**
 - π_I Informed investors - Observe θ
 - $\pi_U = 1 - \pi_I$ Uninformed investors - Do not update from prices
 - Firm manager - Chooses production given prices

- Dividend $\Pi = D + \theta + \beta \left(\theta^2 - (\theta - k^*)^2 \right)$, $\beta \geq 0$

- Optimal investment: $k^* = \mathbb{E} [\theta | P_1]$
Hayekian production

- **Environment**
 - π_I Informed investors - Observe θ
 - $\pi_U = 1 - \pi_I$ Uninformed investors - Do not update from prices
 - Firm manager - Chooses production given prices

- Dividend $\Pi = D + \theta + \beta \left(\theta^2 - (\theta - k^*)^2 \right)$, $\beta \geq 0$

- Optimal investment: $k^* = \mathbb{E} [\theta | P_1]$

- **Assumptions**
 1. Informed investors do not internalize effect in production

\[\theta(\tau)\]
Hayekian production

- **Environment**
 - π_I Informed investors - Observe θ
 - $\pi_U = 1 - \pi_I$ Uninformed investors - Do not update from prices
 - Firm manager - Chooses production given prices

- Dividend $\Pi = D + \theta + \beta \left(\theta^2 - (\theta - k^*)^2 \right)$, $\beta \geq 0$

- Optimal investment: $k^* = \mathbb{E} [\theta | P_1]$

- **Assumptions**
 1. Informed investors do not internalize effect in production
 2. Uninformed investors do not learn
Hayekian production

- **Environment**
 - π_I Informed investors - Observe θ
 - $\pi_U = 1 - \pi_I$ Uninformed investors - Do not update from prices
 - Firm manager - Chooses production given prices
- Dividend $\Pi = D + \theta + \beta \left(\theta^2 - (\theta - k^*)^2 \right)$, $\beta \geq 0$
- Optimal investment: $k^* = \mathbb{E}[\theta|P_1]$
- **Assumptions**
 1. Informed investors do not internalize effect in production
 2. Uninformed investors do not learn
- There is no trade in equilibrium when $\bar{\theta}(\tau) \leq \theta \leq \bar{\theta}(\tau)$

\[\begin{tabular}{c|c|c}
Sell & No Trade & Buy \\
$\theta(\tau)$ & 0 & $\bar{\theta}(\tau)$
\end{tabular}\]
Hayekian production

- Marginal tax change

\[
\frac{dV}{d\tau} = \mathbb{E}_\theta \left[\frac{dV}{d\tau} \bigg| \theta \right] + \Psi(\tau) < 0
\]

- Even locally first order \(\Psi(\tau) |_{\tau=0} < 0 \)
- Learning externality
- Optimal tax \(\tau^* = \tau^*_{\text{no-info}} \) \(+ \tau^*_{\text{information}} \)

If \(\tau^*_{\text{no-info}} = 0 \), optimal policy is subsidy, not laissez-faire
Hayekian production

- Marginal tax change

\[
\frac{dV}{d\tau} = E_\theta \left[\frac{dV}{d\tau} \right]_\theta + \Psi(\tau)
\]

Where \(\Psi(\tau) \) captures distortions in production efficiency

\[
\Psi(\tau) \equiv \left(V^T(\theta) - V^{NT}(\theta) \right) \phi_{Var[\theta]}(\theta) \left(\frac{d\theta(\tau)}{d\tau} \right)_{>0} + \left(V^{NT}(\bar{\theta}) - V^T(\bar{\theta}) \right) \phi_{Var[\theta]}(\bar{\theta}) \left(\frac{d\bar{\theta}(\tau)}{d\tau} \right)_{<0} + \left(V^{NT}(\theta) - V^T(\theta) \right) \phi_{Var[\theta]}(\theta) \left(\frac{d\theta(\tau)}{d\tau} \right)_{<0} + \left(V^T(\theta) - V^{NT}(\theta) \right) \phi_{Var[\theta]}(\theta) \left(\frac{d\theta(\tau)}{d\tau} \right)_{>0}
\]
Hayekian production

- Marginal tax change

\[
\frac{dV}{d\tau} = \mathbb{E}_\theta \left[\frac{dV}{d\tau} \right]_{\theta} + \Psi(\tau) < 0
\]

Where \(\Psi(\tau) \) captures distortions in production efficiency

\[\Psi(\tau) \equiv \left(V^T(\theta) - V^{NT}(\theta) \right) \phi_{\text{Var}[\theta]}(\tilde{\theta}) \frac{d\theta(\tau)}{d\tau} + \left(V^{NT}(\tilde{\theta}) - V^T(\tilde{\theta}) \right) \phi_{\text{Var}[\theta]}(\tilde{\theta}) \frac{d\tilde{\theta}(\tau)}{d\tau} > 0\]
Hayekian production

- Marginal tax change

\[
\frac{dV}{d\tau} = E_\theta \left[\frac{dV}{d\tau} \bigg| \theta \right] + \Psi(\tau) < 0
\]

Where \(\Psi(\tau) \) captures distortions in production efficiency

\[
\Psi(\tau) \equiv \left(V^T(\theta) - V^{NT}(\theta) \right) \phi_{\text{Var}[\theta]}(\theta) \frac{d\theta(\tau)}{d\tau} < 0 + \left(V^{NT}(\bar{\theta}) - V^T(\bar{\theta}) \right) \phi_{\text{Var}[\theta]}(\bar{\theta}) \frac{d\bar{\theta}(\tau)}{d\tau} > 0
\]
Hayekian production

- Marginal tax change

\[
\frac{dV}{d\tau} = \mathbb{E}_\theta \left[\left. \frac{dV}{d\tau} \right|_\theta \right] + \Psi(\tau) < 0
\]

Where \(\Psi(\tau) \) captures distortions in production efficiency

\[
\Psi(\tau) \equiv \left(V^T(\theta) - V^{NT}(\theta) \right) \phi_{\text{Var}[\theta]}(\theta) \frac{d\theta(\tau)}{d\tau} < 0 + \left(V^{NT}(\bar{\theta}) - V^T(\bar{\theta}) \right) \phi_{\text{Var}[\theta]}(\bar{\theta}) \frac{d\bar{\theta}(\tau)}{d\tau} > 0
\]

- Even locally first order \(\Psi(\tau)|_{\tau=0} < 0 \)
Hayekian production

- Marginal tax change

$$\frac{dV}{d\tau} = \mathbb{E}_\theta \left[\left. \frac{dV}{d\tau} \right| \theta \right] + \Psi(\tau) < 0$$

Where $\Psi(\tau)$ captures distortions in production efficiency

$$\Psi(\tau) \equiv \left(V^T(\theta) - V^{NT}(\theta) \right) \phi_{\text{Var}[\theta]}(\theta) \frac{d\theta}{d\tau} + \left(V^{NT}(\bar{\theta}) - V^T(\bar{\theta}) \right) \phi_{\text{Var}[\theta]}(\bar{\theta}) \frac{d\bar{\theta}}{d\tau}$$

- Even locally first order $\Psi(\tau)|_{\tau=0} < 0$ - Learning externality
Hayekian production

- Marginal tax change

\[\frac{dV}{d\tau} = \mathbb{E}_\theta \left[\frac{dV}{d\tau} \bigg| \theta \right] + \Psi(\tau) \]

Where \(\Psi(\tau) \) captures distortions in production efficiency

\[\Psi(\tau) \equiv \left(V^T(\theta) - V^{NT}(\theta) \right) \phi_{\text{Var}[\theta]}(\theta) \frac{d\theta(\tau)}{d\tau} + \left(V^{NT}(\bar{\theta}) - V^T(\bar{\theta}) \right) \phi_{\text{Var}[\theta]}(\bar{\theta}) \frac{d\bar{\theta}(\tau)}{d\tau} \]

- Even locally first order \(\Psi(\tau)|_{\tau=0} < 0 \) - Learning externality

- Optimal tax

\[\tau^* = \tau^*_{\text{no-info}} + \tau^*_{\text{information}} \]

\[> 0 \quad < 0 \quad \geq 0 \]
Hayekian production

- Marginal tax change

\[
\frac{dV}{d\tau} = \mathbb{E}_\theta \left[\frac{dV}{d\tau} \bigg|_{\theta} \right] + \Psi(\tau) < 0
\]

Where \(\Psi(\tau) \) captures distortions in production efficiency

\[
\Psi(\tau) \equiv \left(V^T(\theta) - V^{NT}(\theta) \right)^{\phi_{\text{Var}[\theta]}(\theta)} \frac{d\theta(\tau)}{d\tau} + \left(V^{NT}(\overline{\theta}) - V^T(\overline{\theta}) \right)^{\phi_{\text{Var}[\theta]}(\overline{\theta})} \frac{d\overline{\theta}(\tau)}{d\tau} > 0
\]

- Even locally first order \(\Psi(\tau)\big|_{\tau=0} < 0 \) - Learning externality

- Optimal tax

\[
\tau^* = \tau^*_{\text{no-info}} + \tau^*_{\text{information}} > 0 < 0 \geq 0
\]

- If \(\tau^*_{\text{no-info}} = 0 \), optimal policy is subsidy, not laissez-faire
Extra Derivations

\[\hat{V}_i = (\mathbb{E}[D] - A_i \text{Cov}[E_{2i}, D] - P_1) X_{1i} + P_1 X_{0i} - \frac{A_i}{2} \text{Var}[D] (X_{1i})^2 \]

\[\frac{d\hat{V}_i}{d\tau} = (\mathbb{E}[D] - A_i \text{Cov}[E_{2i}, D] - P_1 - A_i X_{1i} \text{Var}[D]) \frac{dX_{1i}}{d\tau} - \Delta X_{1i} \frac{dP_1}{d\tau} \]

\[\frac{dV_i}{d\tau} = [(\mathbb{E}[D] - \mathbb{E}_i[D]) + \text{sgn}(\Delta X_{1i}) P_1 \tau] \frac{dX_{1i}}{d\tau} - \Delta X_{1i} \frac{dP_1}{d\tau} \]
Example 3: 35% Non-fundamental trading - $\tau^* = 2.01\%$ - Gain 0.11%
Intuition on $\frac{dP_1}{d\tau}$