Empirical DSGE Models:
Sources of Fluctuations, Transmission Mechanisms, and Optimal Policy

Giorgio Primiceri
Northwestern University

University of Chicago
November 6, 2012
Based on 3 papers with Justiniano and Tambalotti

1. “Is there a trade-off between inflation and output stabilization?”

2. “Investment shocks and business cycles”

3. “Investment shocks and the relative price of investment”
HP-detrended GDP in the US
Imperfect competition and inefficient fluctuations

- Modern business cycle models feature imperfect competition

- Market power in goods & labor markets implies
 - Price markups over MC
 - Wage markups over the MRS
Imperfect competition and inefficient fluctuations

- Markups vary over time for 2 reasons:
 1. Direct shocks to markups ➔ exogenous markup variation
 2. Sticky prices and wages ➔ endogenous markup variation
Imperfect competition and inefficient fluctuations

- Markups vary over time for 2 reasons:
 1. Direct shocks to markups → exogenous markup variation
 2. Sticky prices and wages → endogenous markup variation

- Markups variation contributes to fluctuations
 - Inefficient fluctuations
 - Would not be observed in a competitive economy
The questions

1. How important are inefficient fluctuations in US postwar business cycles?
The questions

① How important are inefficient fluctuations in US postwar business cycles?

➔ Inefficient fluctuations are large
The questions

1. How important are inefficient fluctuations in US postwar business cycles?

 \[\text{Inefficient fluctuations are large}\]

2. Should a monetary authority counteract these inefficient fluctuations?
The questions

① How important are inefficient fluctuations in US postwar business cycles?

→ Inefficient fluctuations are large

② Should a monetary authority counteract these inefficient fluctuations?

→ Yes, because policy faces a minor trade-off between output gap and inflation stabilization at business cycle frequencies
3. Which shocks drive business cycles?
The questions

3. Which shocks drive business cycles?

Investment shocks: disturbances to the transformation of investment into productive capital
The questions

③ Which shocks drive business cycles?

Investment shocks: disturbances to the transformation of investment into productive capital

④ How to interpret these shocks?
The questions

③ Which shocks drive business cycles?

➡️ Investment shocks: disturbances to the transformation of investment into productive capital

④ How to interpret these shocks?

➡️ They seem to proxy for omitted financial factors
Outline

- Sketch of the model
 - Why a medium/large-scale model

- Bayesian approach to inference

- Results
 1. How important are inefficient fluctuations?
 2. Should monetary policy counteract them?
 3. What are the drivers of business cycles?
 4. What is the interpretation of these shocks?

- Where do we go from here?
The model: summary

- Medium-scale DSGE model of the US business cycle
 - Christiano, Eichenbaum and Evans (2005, JPE)
 - Smets and Wouters (2007, AER)

- Stochastic growth model + Shocks + “Frictions”
The model

- Production technology of final-good producers

\[Y_t = \left[\int_0^1 Y_t(i) \frac{1}{1 + \lambda_{p,t}} \, di \right]^{1 + \lambda_{p,t}} \]

price markup shock
The model

- Production technology of intermediate goods producers

\[Y_t(i) = A_t^{1-\alpha} K_t(i)^{\alpha} L_t(i)^{1-\alpha} \]

- Monopolistically competitive markets

- Optimizing firms set prices by maximizing PDV of profits

- Calvo type stickiness: a fraction \(\xi_p \) of firms cannot re-optimize
 - index prices to ss and past inflation
The model

- **Households maximization problem**

\[E_0 \sum_{t=0}^{\infty} \beta^t b_t \left[\log(C_t - hC_{t-1}) - \varphi_t \frac{L_t(j)^{1+\nu}}{1 + \nu} \right] \]

subject to

\[P_t C_t + P_t I_t + T_t + B_t \leq R_{t-1}B_{t-1} + Q_t(j) + \Pi_t + W_t(j)L_t(j) + r_t^k K_t \]

\[K_{t+1} = (1 - \delta)K_t + \left(1 - S \left(\frac{I_t}{I_{t-1}} \right) \right) \mu_t I_t \]
The model

- **Households maximization problem**

\[
E_0 \sum_{t=0}^{\infty} \beta^t b_t \left[\log(C_t - hC_{t-1}) - \phi_t \frac{L_t(j)^{1+\nu}}{1 + \nu} \right]
\]

subject to

\[
P_tC_t + P_tI_t + T_t + B_t \leq R_{t-1}B_{t-1} + Q_t(j) + \Pi_t + W_t(j)L_t(j) + r_t^kK_t
\]

\[
K_{t+1} = (1 - \delta)K_t + \left(1 - S \left(\frac{I_t}{I_{t-1}}\right)\right)\mu_t I_t
\]

Labor supply shock

Investment shock
The model

- Households maximization problem

\[E_0 \sum_{t=0}^{\infty} \beta^t b_t \left[\log(C_t - hC_{t-1}) - \frac{\varphi_t L_t(j)^{1+\nu}}{1 + \nu} \right] \]

subject to

\[P_tC_t + P_tI_t + T_t + B_t \leq R_{t-1}B_{t-1} + Q_t(j) + \Pi_t + W_t(j)L_t(j) + r^k_tK_t \]

\[K_{t+1} = (1 - \delta)K_t + \left(1 - S \left(\frac{I_t}{I_{t-1}} \right) \right) \mu_tI_t \]

- Monopolistically competitive suppliers of specialized labor

- Calvo-type stickiness: a fraction \(\xi_w \) of HH cannot re-optimize
 - index wages to ss and past inflation-productivity
The model

- Employment agencies aggregate differentiated labor into homogeneous labor

\[L_t = \left[\int_0^1 L_t(j) \frac{1}{1+\lambda_{w,t}} \, di \right]^{1+\lambda_{w,t}} \]

wage markup shock
The model

- Monetary policy sets the short-term nominal interest rate following a Taylor-type rule

\[
\frac{R_t}{R} = \left(\frac{R_{t-1}}{R} \right)^{\rho_R} \left[\left(\frac{\pi_{t-3,t}^*}{\pi_t} \right)^{\phi_\pi} \left(\frac{X_t / X_{t-4}}{\epsilon^{\gamma}} \right)^{\phi_X} \right]^{1-\rho_R} \varepsilon_{R,t}
\]
The model: summary

“Frictions”

1. Preferences
 - Habit in consumption

2. Technology
 - Adjustment costs in investment
 - Variable capital utilization

3. Market structure: Imperfect competition
 - Monopolistic competition in products and labor markets
 - Price and wage stickiness (endogenous markups)
Exogenous disturbances

- **Tastes & technology**
 - Neutral technology ➔ growth rate is AR(1)
 - Investment specific ➔ AR(1)
 - Inter-temporal preference shock ➔ AR(1)
 - Labor supply ➔ AR(1)

- **Shocks to markets competitiveness**
 - Markup shock in wages ➔ $i.i.d.$
 - Markup shock in prices ➔ AR(1)

- **Policy**
 - Government spending ➔ AR(1)
 - MP shocks ➔ $i.i.d.$
 - Inflation target shock ➔ persistent AR(1)
Exogenous disturbances

- **Tastes & technology**
 - Neutral technology → growth rate is AR(1)
 - Investment specific → AR(1)
 - Inter-temporal preference shock → AR(1)
 - Labor supply → AR(1)

- **Shocks to markets competitiveness**
 - Markup shock in wages → $i.i.d.$
 - Markup shock in prices → AR(1)

- **Policy**
 - Government spending → AR(1)
 - MP shocks → $i.i.d.$
 - Inflation target shock → persistent AR(1)
Data and estimation

- Observable variables
 1. GDP
 2. Consumption
 3. Investment
 4. Hours
 5. Inflation
 6. Federal funds rate
 7. Wages

- Bayesian inference
Bayesian approach to inference

- Solution of the log-linearized DSGE model:

\[x_t = G(\theta) x_{t-1} + M(\theta) \varepsilon_t \]

\[y_t = H(\theta) x_t \]

- Model’s unknown coefficients: \(\theta \)
Bayesian approach to inference

- Solution of the log-linearized DSGE model:
 \[x_t = G(\theta) x_{t-1} + M(\theta) \varepsilon_t \]
 \[y_t = H(\theta) x_t \]

- Model’s unknown coefficients: \(\theta \)

- Posterior distribution: \(p(\theta | Y) \propto p(Y | \theta) \cdot p(\theta) \)

Likelihood function \quad Prior information
Why Bayesian

- “Philosophical” reasons
 - Pull ML estimates towards plausible regions of the parameter space
 - Smooth out narrow peaks of the likelihood function
 - Probability models
 - Want to use these models for policy
Why Bayesian

- "Philosophical" reasons
 - Pull ML estimates towards plausible regions of the parameter space
 - Smooth out narrow peaks of the likelihood function
 - Probability models
 - Want to use these models for policy

- "Practical" reasons
 - Multiple peaks in the likelihood function
 - Likelihood can be flat along some directions
Appeal of Bayesian medium-scale DSGE models

- Encompasses most existing views

- Probability models

- Fit comparable to VARs
Outline

- Sketch of the model
 - Why a medium/large-scale model

- Bayesian approach to inference

- Results
 1. How important are inefficient fluctuations?
 2. Should monetary policy counteract them?
 3. What are the drivers of business cycles?
 4. What is the interpretation of these shocks?

- Where do we go from here?
What is the share of inefficient fluctuations?

- Compare actual output to potential output

- Potential output
 - Level of output that would prevail under constant markups
 - Almost identical log-linear dynamics of efficient output (i.e. output under perfect competition)
Model economy

- Shocks to preferences and technology
- Shocks to the degree of market competitiveness
- Sticky prices and wages
 - Estimated policy rule
 - Habit formation, etc...
- Observed Output
 - Y
Model economy

Shocks to preferences and technology

Sticky prices and wages
Estimated policy rule
Habit formation, etc…

Observed Output

Shocks to the degree of market competitiveness
Model economy under **constant markups**

- **Potential Output**
 - **Scheduled Output**
 - **Y**

Potential output = level of output that would have been observed in the absence of inefficient markup variation.
Actual and DSGE-potential output

(a): GDP and Potential GDP

(b): Output Gap
Actual and DSGE-potential output

(a): GDP and Potential GDP

(b): Output Gap
Actual and DSGE-potential output
Summary of results about inefficient fluctuations

- Potential output is quite volatile, as in RBC
- The output gap is cyclical and also quite volatile

Inefficient fluctuations are large
Summary of results about inefficient fluctuations

- Potential output is quite volatile, as in RBC
- The output gap is cyclical and also quite volatile

Inefficient fluctuations are large

Next question ➔ What should policy do about it?
Outline

- Sketch of the model
 - Why a medium/large-scale model

- Bayesian approach to inference

- Results
 1. How important are inefficient fluctuations?
 2. Should monetary policy counteract them?
 3. What are the drivers of business cycles?
 4. What is the interpretation of these shocks?

- Where do we go from here?
The policy tradeoff

- Efficient allocation

 \[MRS_t = MPL_t = \frac{W_t}{P_t} \]

 \[Y_{it} = Y_t \quad \forall i \]

 \[L_{jt} = L_t \quad \forall j \]
The policy tradeoff

- Efficient allocation
 - \(MRS_t = MPL_t = \frac{W_t}{P_t} \)
 - \(Y_{it} = Y_t \quad \forall i \)
 - \(L_{jt} = L_t \quad \forall j \)

- Our economy with sticky prices and wages
 - \(P_t = \mu_t^p MC_t \)
 - \(\frac{W_t}{P_t} = \mu_t^w MRS_t \)
The policy tradeoff

- **Efficient allocation**
 - \(MRS_t = MPL_t = \frac{W_t}{P_t} \)
 - \(Y_{it} = Y_t \quad \forall i \)
 - \(L_{jt} = L_t \quad \forall j \)

- **Our economy with sticky prices and wages**
 - \(P_t = \mu_t^p MC_t \)
 - \(\frac{W_t}{P_t} = \mu_t^w MRS_t \)
 - \(MRS_t \cdot \mu_t^w \cdot \mu_t^p = MPL_t \)
The policy tradeoff

- Efficient allocation

 \[MRS_t = MPL_t = \frac{W_t}{P_t} \]

 \[Y_{it} = Y_t \quad \forall i \]

 \[L_{jt} = L_t \quad \forall j \]

- Our economy with sticky prices and wages

 \[P_t = \mu_t^p MC_t \]

 \[\frac{W_t}{P_t} = \mu_t^w MRS_t \]

 \[\begin{aligned}
 \{ & MRS_t \cdot \mu_t^w \cdot \mu_t^p = MPL_t \\
 & Y_{it} \neq Y_t \\
 & L_{jt} \neq L_t
 \end{aligned} \]
The policy tradeoff

- Efficient allocation
 - \(MRS_t = MPL_t = \frac{W_t}{P_t} \)
 - \(Y_{it} = Y_t \quad \forall i \)
 - \(L_{jt} = L_t \quad \forall j \)

- Our economy with sticky prices and wages
 - \(P_t = \mu^p_t MC_t \)
 - \(\frac{W_t}{P_t} = \mu^w_t MRS_t \)
 - \(Y_{it} \neq Y_t \)
 - \(L_{jt} \neq L_t \)

\[MRS_t \cdot \mu^w_t \cdot \mu^p_t = MPL_t \]
The policy tradeoff

- The efficient allocation is not achievable by monetary policy in our economy
 - Many independent distortions and one instrument

- Tradeoff between
 - Real stabilization, i.e. eliminating the variation of average markups
 - Nominal stabilization, i.e. eliminating price and wage dispersion
The policy tradeoff

- The efficient allocation is not achievable by monetary policy in our economy
 - Many independent distortions and one instrument

- Tradeoff between
 - Real stabilization, i.e. eliminating the variation of average markups
 - Nominal stabilization, i.e. eliminating price and wage dispersion

- Sources of trade-off
 - Sticky prices and wages
 - Markup shocks
The optimal allocation

- Maximize the utility of the average HH
 - Subject to the (nonlinear) constraints represented by the equilibrium behavior of private agents

- Compute a first order approximation to the dynamics under optimal policy

- Plot the path of variables in a counterfactual economy hit by the same shocks, but with Ramsey policy since the beginning of time
The optimal allocation

(a): Actual and Optimal GDP in deviation from potential

(b): Price Inflation

(c): Wage Inflation
The optimal allocation

(a): Actual and Optimal GDP in deviation from potential

(b): Price Inflation

(c): Wage Inflation
Summary of results about the optimal allocation

- Optimal \approx potential output
- Optimal inflations are quite stable
Summary of results about the optimal allocation

- Optimal \(\approx \) potential output
- Optimal inflations are quite stable

1. Little trade-off between output and inflation stabilization (at business cycle frequencies)
Summary of results about the optimal allocation

- Optimal \approx potential output

- Optimal inflations are quite stable

1. Little trade-off between output and inflation stabilization (at business cycle frequencies)

2. A large fraction of fluctuations should have been avoided
Outline

- Sketch of the model
 - Why a medium/large-scale model

- Bayesian approach to inference

- Results
 1. How important are inefficient fluctuations?
 2. Should monetary policy counteract them?
 3. What are the drivers of business cycles?
 4. What is the interpretation of these shocks?

- Where do we go from here?
Sources of business cycles

- Use the DSGE’s spectrum to analyze fluctuations at business cycle frequencies

- 6 to 32 quarters (Stock and Watson)
Variance decomposition (BC frequencies)

<table>
<thead>
<tr>
<th>Series</th>
<th>Monetary</th>
<th>Neutral</th>
<th>Government</th>
<th>Investment</th>
<th>Price mark-up</th>
<th>Labor supply</th>
<th>Preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>0.05</td>
<td>0.24</td>
<td>0.02</td>
<td>0.53</td>
<td>0.05</td>
<td>0.04</td>
<td>0.07</td>
</tr>
<tr>
<td>Hours</td>
<td>0.06</td>
<td>0.10</td>
<td>0.02</td>
<td>0.61</td>
<td>0.06</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td>Consumption</td>
<td>0.02</td>
<td>0.27</td>
<td>0.02</td>
<td>0.08</td>
<td>0.01</td>
<td>0.08</td>
<td>0.51</td>
</tr>
<tr>
<td>Investment</td>
<td>0.03</td>
<td>0.06</td>
<td>0.00</td>
<td>0.85</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Wages</td>
<td>0.00</td>
<td>0.39</td>
<td>0.00</td>
<td>0.04</td>
<td>0.31</td>
<td>0.25</td>
<td>0.00</td>
</tr>
<tr>
<td>Inflation</td>
<td>0.03</td>
<td>0.14</td>
<td>0.00</td>
<td>0.07</td>
<td>0.40</td>
<td>0.31</td>
<td>0.02</td>
</tr>
<tr>
<td>Interest Rates</td>
<td>0.18</td>
<td>0.09</td>
<td>0.01</td>
<td>0.48</td>
<td>0.04</td>
<td>0.04</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Variance decomposition (BC frequencies)

<table>
<thead>
<tr>
<th>Series</th>
<th>Shock</th>
<th>Monetary</th>
<th>Neutral</th>
<th>Government</th>
<th>Investment</th>
<th>Price mark-up</th>
<th>Labor supply</th>
<th>Preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td></td>
<td>0.05</td>
<td>0.24</td>
<td>0.02</td>
<td>0.53</td>
<td>0.05</td>
<td>0.04</td>
<td>0.07</td>
</tr>
<tr>
<td>Hours</td>
<td></td>
<td>0.06</td>
<td>0.10</td>
<td>0.02</td>
<td>0.61</td>
<td>0.06</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>Consumption</td>
<td>0.02</td>
<td>0.27</td>
<td>0.02</td>
<td>0.08</td>
<td>0.01</td>
<td>0.08</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>Investment</td>
<td>0.03</td>
<td>0.06</td>
<td>0.00</td>
<td>0.85</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Wages</td>
<td>0.00</td>
<td>0.39</td>
<td>0.00</td>
<td>0.04</td>
<td>0.31</td>
<td>0.25</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Inflation</td>
<td>0.03</td>
<td>0.14</td>
<td>0.00</td>
<td>0.07</td>
<td>0.40</td>
<td>0.31</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Interest Rates</td>
<td>0.18</td>
<td>0.09</td>
<td>0.01</td>
<td>0.48</td>
<td>0.04</td>
<td>0.04</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Why investment shocks become so important?
Why investment shocks become so important?

- Standard neoclassical models

 - Investment shocks unlikely drivers of business cycles

\[
\text{MRS (C, H) = MPL (H)}
\]

\[
+ + -
\]
Frictions

Deviations from Neoclassical model

1. Preferences → MRS
 - Habit in consumption
Frictions

- Deviations from Neoclassical model

 1. Preferences \rightarrow MRS
 - Habit in consumption

 2. Technology \rightarrow MRT
 - Adjustment costs in investment
 - Variable capital utilization
Frictions

- Deviations from Neoclassical model

1. Preferences ➔ MRS
 - Habit in consumption

2. Technology ➔ MRT
 - Adjustment costs in investment
 - Variable capital utilization

3. Market structure: Imperfect competition ➔ Wedge
 - Monopolistic competition in products and labor markets
 - Price and wage stickiness (endogenous mark-ups)
Why investment shocks become so important?

\[\mu_p(H) \cdot \mu_w(H) \cdot \text{MRS}(C, H) = \text{MPL}(H) \]

Price markup \quad Wage markup
Outline

- Sketch of the model
 - Why a medium/large-scale model

- Bayesian approach to inference

- Results
 1. How important are inefficient fluctuations?
 2. Should monetary policy counteract them?
 3. What are the drivers of business cycles?
 4. What is the interpretation of these shocks?

- Where do we go from here?
What is the interpretation of investment shocks?

\[K_{t+1} = (1 - \delta)K_t + \mu_t \left(1 - S\left(\frac{I_t}{I_{t-1}}\right)\right) I_t \]

- Disturbance to the transformation of investment into productive capital
What is the interpretation of investment shocks?

\[K_{t+1} = (1 - \delta)K_t + \mu_t \left(1 - S\left(\frac{I_t}{I_{t-1}}\right)\right) I_t \]

- Disturbance to the transformation of investment into productive capital
- Prime suspect: access to credit
- Proxy for financial frictions?
What is the interpretation of investment shocks?

\[K_{t+1} = (1 - \delta)K_t + \mu_t \left(1 - S\left(\frac{I_t}{I_{t-1}}\right)\right)I_t \]

- Disturbance to the transformation of investment into productive capital
- Prime suspect: access to credit
- Proxy for financial frictions?
 - One model in which this is literally true
 - Empirical evidence
 - they are correlated to spreads
 - responsible for the recession
Investment shocks and the financial accelerator

- Calstrom and Fuerst’s (1997) financial accelerator
 - Entrepreneurs borrow but cannot be monitored
 - Resulting agency costs (Φ_t) impede capital formation

$$K_{t+1} = (1 - \delta)K_t + (1 - \Phi_t)I_t$$

- “Isomorphic to model with capital adjustment costs”
Investment shocks and the financial accelerator

Calstrom and Fuerst’s (1997) financial accelerator

- Entrepreneurs borrow but cannot be monitored
- Resulting agency costs (Φ_t) impede capital formation

$$K_{t+1} = (1 - \delta)K_t + (1 - \Phi_t)I_t$$

- “Isomorphic to model with capital adjustment costs”

Compare to

$$K_{t+1} = (1 - \delta)K_t + \mu_t (1 - S_t) I_t$$

Key difference: Φ_t is endogenous
Some suggestive evidence: shocks and spreads

- Baa - Aaa investment grade securities
- MEI shock
A reality check: the 2008 recession

Figure 4: Recent fluctuations in output and hours explained by MEI shocks only

Annual output growth

-5 0 5

2002 2003 2004 2005 2006 2007 2008

Actual
MEI shocks

Hours

-8 -6 -4 -2 0 2 4

2002 2003 2004 2005 2006 2007 2008

Actual
MEI shocks
Where do we go from here?

- Investment shocks are key & may proxy for financial factors
Where do we go from here?

- Investment shocks are key & may proxy for financial factors
- Recent evidence that financial markets are not just a veil
Where do we go from here?

- Investment shocks are key & may proxy for financial factors
- Recent evidence that financial markets are not just a veil
- Next step is to incorporate financial frictions in DSGE

How?
- Carlstrom and Fuerst
- Bernanke and Gertler
- Kiyotaki and Moore

Where?
- Households
- Firms
- Banks
Where do we go from here?

- Re-evaluate of conclusions on inefficiency of business cycles and optimal policy
Conclusions

Results
- Inefficient fluctuations are large
- Monetary policy should reduce them
- Business cycles originate from investment shocks
- Investment shocks may proxy for financial factors

Need to incorporate financial factors