Discussion of "Bank Risk Dynamics and Distance to Default" by Nagel and Purnanandam

Zhiguo He

University of Chicago and NBER

2015, Conference on Financial Regulation, BFI
Summary

- Simple and forceful point: The assets sitting on banks are different from non-financial sector
 - They are loans/debt backed by non-financial sector
 - In particular, strong feature of stochastic volatility—low volatility in good times but high volatility in bad times

- How much could traditional Merton models (with constant volatility) go wrong?

- What are the policy implications?
Setting

- Underlying firm asset, $A_0 = 1$

$$\frac{dA^i_t}{A^i_t} = (r - \delta) dt + \sigma \left(\sqrt{\rho} dW_t + \sqrt{1 - \rho} dZ^i_t \right)$$

- Firm’s debt with maturity T is bank’s asset, with face value F and value L ($=0.3$ if firms, 0.8 if housing)
 - Annual interest rate log $(F/L) / T$ endogenous given
- Bank’s debt (deposits) D, say equals $0.9L < F$
Setting

- Underlying firm asset, \(A_0 = 1 \)

\[
\frac{dA_t^i}{A_t^i} = (r - \delta) \, dt + \sigma \left(\sqrt{\rho} dW_t + \sqrt{1 - \rho} dZ_t^i \right)
\]

- Firm’s debt with maturity \(T \) is bank’s asset, with face value \(F \) and value \(L \) (=0.3 if firms, 0.8 if housing)
 - Annual interest rate \(\log (F/L) / T \) endogenous given
- Bank’s debt (deposits) \(D \), say equals \(0.9L < F \)
- Staggered loan structure
 - \(T = 10 \), and the bank has 1, 2, ..., 10 year-to-maturity loans
 - When a cohort of loan matures, reinvesting the proceeds
 - It leads to smoothing (which is relevant practically)
 - But introduces history-dependence....not tractable
Modified Merton Model

\[E^f = \text{Call} (S = A, K = F) \]
\[E^b = \text{Call} (S = A, K = F) - \text{Call} (S = A, K = D) \]
Equity Volatility: Financials and Non-Financials (1)

volatility of equity return

\[\text{vol}(dE_b/E_b) \]
\[\text{vol}(dE_f/E_f) \]

\[T = 10 \]
\[r = 0.05 \]
\[\sigma = 0.25 \]
\[F = 0.3 \]
\[D = 0.2 \]
will be nice to show $\frac{\text{vol}(E^b \text{ return})}{\text{vol}(E^f \text{ return})}$ goes up when A drops.
Connection to stochastic volatility literature

- Basically, bank asset has a stronger "leverage effect" than non-financial firms
- Two reduced-form specifications in the literature
 - Leverage effect with $\theta < 1$
 $$\frac{dS_t}{S_t} = (r - \delta) \, dt + \sigma S_t^{\theta-1} \, dW_t$$
 - In the data, for individual non-financial stocks $\theta \approx 0.9$ (Cheung and Ng, 1992)
 - Or, stochastic volatility (McQuade 2014).
 $$\frac{dS_t}{S_t} = (r - \delta) \, dt + \sigma_t \, dW_t$$
 $$d\sigma_t = (\bar{\sigma} - \sigma_t) \, dt + \sqrt{\sigma_t} \, dW_t^{\sigma}, \quad \text{corr} \left(dW_t^{\sigma}, dW_t \right) < 0$$
- Modified Merton is more structural, with much better motivated primitive parameters
- For regulators/practitioners where reduced-form models have great value, maybe useful to come up with
 - a better stochastic process of bank equity, and/or
 - more accurate parameters
Connection to literature which uses Merton model (by mistake)

- In what way this paper changes our understanding of risk of the banking sector?
 - For sure quantitatively (and for those CDS traders who use KMV models); but qualitatively?

- Acharya, Anginer, Warburton 2015
 - Emphasize that credit spreads of big banks behave differently than small peers
 - The use Merton’s implied distance-to-default as an regression input...
 - Less subject to mismeasurement issue, as long as Merton’s DD is monotone with Modified Merton’s DD

- Duffie, Saita, and Wang (2007), Bharath and Shumway (2008): Merton’s distance-to-default has predictive power
 - Redo their analysis, run horse races?
Another related paper (1)

- Atkeson, Eisfeldt, Weill 2014, who propose a measure of Distance to Insolvency

\[
DI = \frac{1}{vol\left(\frac{dE}{E}\right)} = \frac{1}{\sigma_E}
\]

- Though \(DI\) is driven by both leverage and stochastic asset volatility \(\sigma_A\), they show the main driver is time-varying \(\sigma_A\)

- Andrea just showed that there is little difference in \(\sigma_A\) variations between financial and non-financial’s

- But, compare to non-financial firms, GBLFI institutions exhibit wilder movement in \(\frac{1}{\sigma_E}\), consistent with this paper
 - GBLFI: Government Backed Large Financial Institutions (commercial banks?)
Another related paper (2)
Conclusion

- An important, relevant, and (unfortunately) overlooked issue

- Will be more interesting to do more comparisons between financial and nonfinancial firms

- Important missing part: the fragility due to bank’s liability structure
 - well, MM holds in Merton model
 - We DO know a lot about the potential qualitative effect of liability structure on banks.....