Retirement, Home Production, and Labor Supply Elasticities

Richard Rogerson
Princeton University

Johanna Wallenius
Stockholm School of Economics

Discussion by Gianluca Violante (NYU)

Recent Developments in the Economics of Home Production and Nonmarket Work
BFI, October 19, 2012
Outline of discussion

• **Key insight**: data on the change in (i) time allocation and (ii) consumption expenditures between work and retirement informative about key elasticities
Outline of discussion

• **Key insight**: data on the change in (i) time allocation and (ii) consumption expenditures between work and retirement informative about key elasticities

• Outline:

 ▶ **Summary of methodology and result**

 ▶ **A remark on calibration**

 ▶ **Methodology is more broadly applicable than you may think**

 ▶ **Methodology is more robust than you may think**

 ▶ **The household?**

Violante, Discussion of Rogerson-Wallenius: "Retirement, Home Production, and Labor Supply Elasticities"
Summary

\[\max \{g_w, g_r, h_w, h_r\} \quad u(c_w) + \frac{\alpha}{1 - \frac{1}{\gamma}} (1 - \overline{h} - h_w)^{1 - \frac{1}{\gamma}} + u(c_r) + \frac{\alpha}{1 - \frac{1}{\gamma}} (1 - h_r)^{1 - \frac{1}{\gamma}} \]

s.t.

\[c_t = \left[a g_t^{1 - \frac{1}{\eta}} + (1 - a) h_t^{1 - \frac{1}{\eta}} \right]^{\eta}_{\eta - 1} \quad t = w, r \]

\[g_w + g_r = \bar{w}h + b \]
Summary

\[
\max_{\{g_w, g_r, h_w, h_r\}} u(c_w) + \frac{\alpha}{1 - \frac{1}{\gamma}} (1 - \bar{h} - h_w)^{1 - \frac{1}{\gamma}} + u(c_r) + \frac{\alpha}{1 - \frac{1}{\gamma}} (1 - h_r)^{1 - \frac{1}{\gamma}}
\]

s.t.

\[
c_t = \left[a g_t^{1 - \frac{1}{\eta}} + (1 - a) h_t^{1 - \frac{1}{\eta}} \right]^{\frac{\eta}{\eta - 1}}
\]

\[
g_w + g_r = w\bar{h} + b
\]

• Take FOC’s, rearrange, and obtain the elasticity ratio formula

\[
\frac{\gamma}{\eta} = \frac{\log \left(\frac{1 - h_r}{1 - h - h_w} \right)}{\log \left(\frac{h_r}{h_w} \right) - \log \left(\frac{g_r}{g_w} \right)}
\]
\[\frac{\gamma}{\eta} = \log \left(\frac{1-h_r}{1-h-h_w} \right) \left(\frac{h_r}{h_w} \right) - \log \left(\frac{g_r}{g_w} \right) \]

- **Parameterization:**
 - \(g_r / g_w = 0.90 \leftrightarrow \) consumption exp. drop at retirement
 - \(h_w = 0.15 \leftrightarrow \) hours of HP for empl. males 60-64 (15 per week)
 - \(\bar{h} = 0.42 \leftrightarrow \) hours of MP for FT empl. males (42 per week)
 - \(h_r = 0.234 \leftrightarrow \) fraction of additional time available at retirement
 \[
 \left(\frac{h_r-h_w}{h} \right) \text{ devoted to home production (20%)}
 \]
Summary

\[
\frac{\gamma}{\eta} = \frac{\log \left(\frac{1-h_r}{1-h-h_w} \right)}{\log \left(\frac{g_r}{h_w} \right) - \log \left(\frac{g_r}{g_w} \right)} = \frac{\log \left(\frac{1-0.234}{1-0.42-0.15} \right)}{\log \left(\frac{0.234}{0.15} \right) - \log (0.90)} = 1.05
\]

- Parameterization:
 - \(g_r/g_w = 0.90 \leftrightarrow\) consumption exp. drop at retirement
 - \(h_w = 0.15 \leftrightarrow\) hours of HP for empl. males 60-64 (15 per week)
 - \(\bar{h} = 0.42 \leftrightarrow\) hours of MP for FT empl. males (42 per week)
 - \(h_r = 0.234 \leftrightarrow\) fraction of additional time available at retirement \(\left(\frac{h_r-h_w}{h} \right)\) devoted to home production (20%)
Summary

\[
\gamma \eta = \frac{\log \left(\frac{1-h_r}{1-h-h_w} \right)}{\log \left(\frac{h_r}{h_w} \right) - \log \left(\frac{g_r}{g_w} \right)} = \frac{\log \left(\frac{1-0.234}{1-0.42-0.15} \right)}{\log \left(\frac{0.234}{0.15} \right) - \log (0.90)} = 1.05
\]

- Parameterization:
 - \(g_r / g_w = 0.90 \leftrightarrow \) consumption exp. drop at retirement
 - \(h_w = 0.15 \leftrightarrow \) hours of HP for empl. males 60-64 (15 per week)
 - \(\bar{h} = 0.42 \leftrightarrow \) hours of MP for FT empl. males (42 per week)
 - \(h_r = 0.234 \leftrightarrow \) fraction of additional time available at retirement \((\frac{h_r-h_w}{h})\) devoted to home production (20%)
A remark on the parameterization

\[
\gamma = \frac{\log \left(\frac{1-h_r}{1-h-h_w} \right)}{\log \left(\frac{h_r}{h_w} \right) - \log \left(\frac{g_r}{g_w} \right)} = \frac{\log \left(\frac{1-0.20}{1-0.26-0.15} \right)}{\log \left(\frac{0.20}{0.15} \right) - \log (0.90)} = 0.75
\]

- **Parameterization:**
 - \(g_r / g_w = 0.90 \leftrightarrow \text{consumption exp. drop at retirement} \)
 - \(h_w = 0.15 \leftrightarrow \text{hours of HP for empl. males 60-64 (15 per week)} \)
 - \(\bar{h} = 0.26 \leftrightarrow \text{hours of MP for empl. males 60-64 (26 per week)} \)
 - \(h_r = 0.20 \leftrightarrow \text{fraction of additional time available at retirement} \)
 \(\left(\frac{h_r-h_w}{h} \right) \text{ devoted to home production (20%)} \)
The key insight is broader

- Change in (i) time allocation and (ii) consumption exp. between work and retirement is informative about labor supply elasticity
The key insight is broader

- Change in (i) time allocation and (ii) consumption exp. between work and retirement is informative about labor supply elasticity

\[
\frac{\gamma}{\eta} = \frac{\log \left(\frac{1-h_2}{1-h-h_1} \right)}{\log \left(\frac{h_2}{h_1} \right) - \log \left(\frac{g_2}{g_1} \right)}
\]
The key insight is broader

• Change in (i) time allocation and (ii) consumption exp. between work and retirement is informative about labor supply elasticity

\[\frac{\gamma}{\eta} = \frac{\log \left(\frac{1-h_2}{1-h-h_1} \right)}{\log \left(\frac{h_2}{h_1} \right) - \log \left(\frac{g_2}{g_1} \right)} \]

• Other sources of large “exogenous” variation in time allocation:

 ► Transition from education into work

 ► Transition from childless household to household with children

 ► Transition from employment to unemployment
Transition from employment into unemployment

\[
\frac{\gamma}{\eta} = \frac{\log \left(\frac{1-h_u}{1-h-h_w} \right)}{\log \left(\frac{h_u}{h_w} \right) - \log \left(\frac{g_u}{g_w} \right)}
\]
Transition from employment into unemployment

\[
\frac{\gamma}{\eta} = \frac{\log \left(\frac{1-h_u}{1-h-h_w} \right)}{\log \left(\frac{h_u}{h_w} \right) - \log \left(\frac{g_u}{g_w} \right)}
\]

- \(g_u/g_w = 0.90 \leftrightarrow \) consumption exp. drop after job loss
- \(h_w = 0.10 \leftrightarrow \) hours of HP for FT empl. male (10 per week)
- \(\bar{h} = 0.42 \leftrightarrow \) hours of MP for FT empl. male (42 per week)
- \(h_u = 0.23 \leftrightarrow \) fraction of additional time available to the unemployed \(\left(\frac{h_u-h_w}{h_w} \right) \) devoted to home production (30%)

Transition from employment into unemployment

\[
\frac{\gamma}{\eta} = \frac{\log \left(\frac{1-h_u}{1-h-h_w} \right)}{\log \left(\frac{h_u}{h_w} \right) - \log \left(\frac{g_u}{g_w} \right)} = \frac{\log \left(\frac{1-0.23}{1-0.42-0.10} \right)}{\log (0.23) - \log (0.90)} = 0.5
\]

- \(g_r/g_w = 0.90 \) ↔ consumption exp. drop after job loss
- \(h_w = 0.10 \) ↔ hours of HP for FT empl. male (10 per week)
- \(h = 0.42 \) ↔ hours of MP for FT empl. male (42 per week)
- \(h_u = 0.226 \) ↔ fraction of additional time available to the unemployed \(\left(\frac{h_u-h_w}{h_w} \right) \) devoted to home production (30%)
Robustness to individual heterogeneity

• Allow individual heterogeneity in \(\{u_i, \alpha_i, a_i, w_i, b_i\} \)

• Assume heterogeneity fixed over time
Robustness to individual heterogeneity

- Allow individual heterogeneity in \(\{u_i, \alpha_i, a_i, w_i, b_i\} \)

- Assume heterogeneity fixed over time

\[
\max_{\{g_{it}, h_{it}\}} u_i(c_{iw}) + \frac{\alpha_i}{1 - \frac{1}{\gamma}} (1 - \bar{h} - h_{iw})^{1-\frac{1}{\gamma}} + u_i(c_{ir}) + \frac{\alpha_i}{1 - \frac{1}{\gamma}} (1 - h_{ir})^{1-\frac{1}{\gamma}}
\]

s.t.

\[
c_{it} = \left[a_i g_{it}^{\frac{1}{\eta}} + (1 - a_i) h_{it}^{\frac{1}{\eta}} \right] \frac{\eta}{\eta - 1} \quad t = w, r
\]

\[
g_{iw} + g_{ir} = w_i \bar{h} + b_i \quad (\mu_i)
\]
Robustness to individual heterogeneity

• Ratio of FOCs with respect to \(\{g_{iw}, g_{ir}\} \)

\[
\frac{u_i'(c_{iw}) c_{iw}^{\eta-1}}{u_i'(c_{ir}) c_{ir}^{\eta-1}} \cdot \frac{1}{\left(\frac{\mu_i}{a_i}\right)^{\frac{1}{\eta}}} g_{iw}^{\eta} \cdot \frac{1}{g_{ir}^{\eta}} = g_{iw}^{\eta} = g_{ir}^{\eta}
\]

• Ratio of FOCs with respect to \(\{h_{iw}, h_{ir}\} \)

\[
\frac{u_i'(c_{iw}) c_{iw}^{\eta-1}}{u_i'(c_{ir}) c_{ir}^{\eta-1}} \cdot \frac{\alpha_i}{1-a_i} \cdot \frac{1}{\left(1-h-h_{iw}\right)^{\frac{1}{\gamma}}} h_{iw}^{\eta} \cdot \frac{1}{h_{ir}^{\eta}} \cdot = \frac{1}{\left(1-h-h_{ir}\right)^{\frac{1}{\gamma}}} h_{iw}^{\eta} = h_{ir}^{\eta}
\]

Violante, Discussion of Rogerson-Wallenius: "Retirement, Home Production, and Labor Supply Elasticities"
Robustness to individual heterogeneity

- Not robust if heterogeneity in $\{\alpha_{it}, a_{it}\}$ is time-varying
Robustness to individual heterogeneity

- Not robust if heterogeneity in \(\{ \alpha_{it}, a_{it} \} \) is time-varying

- Ratio of FOCs with respect to \(\{ g_{iw}, g_{ir} \} \)

\[
\frac{u'_i(c_{iw}) c_{iw}^{\eta - 1}}{u'_i(c_{ir}) c_{ir}^{\eta - 1}} = \frac{\left(\frac{\mu_i}{\alpha_{iw}} \right) g_{iw}^{\eta}}{\left(\frac{\mu_i}{\alpha_{ir}} \right) g_{ir}^{\eta}}
\]

- Ratio of FOCs with respect to \(\{ h_{iw}, h_{ir} \} \)

\[
\frac{u'_i(c_{iw}) c_{iw}^{\eta - 1}}{u'_i(c_{ir}) c_{ir}^{\eta - 1}} = \frac{\alpha_{iw}}{1-a_{iw}} \cdot \frac{h_{iw}^{\eta}}{(1-h-h_{iw})^{\frac{1}{\gamma}}}
\]

\[
\frac{\alpha_{ir}}{1-a_{ir}} \cdot \frac{h_{ir}^{\eta}}{(1-h-h_{ir})^{\frac{1}{\gamma}}}
\]
Family

- Individuals belong to families *(elderly belong to couples)*

- *Collective model* of the family
Family

- Individuals belong to families (elderly belong to couples)

- **Collective model** of the family

\[
\max \{G_t, h_{it}, c_{it}\} \sum_{t=w,r} \sum_{i=1,2} \pi_{it} \left[u(c_{it}) + \frac{\alpha}{1 - \frac{1}{\gamma}} (1 - \bar{h}_t - h_{it})^{1-\frac{1}{\gamma}} \right]
\]

s.t.

\[
C_t = \left[aG_t^{1-\frac{1}{\eta}} + (1 - a) (h_{1t} + h_{2t})^{1-\frac{1}{\eta}} \right]^{\frac{\eta}{\eta-1}}
\]

\[
C_t = \sum_{i=1,2} c_{it}
\]

\[
\sum_{i=1,2} (w_i \bar{h}_t + b_i) = G_w + G_r
\]

Violante, Discussion of Rogerson-Wallenius: "Retirement, Home Production, and Labor Supply Elasticities"
Family

- Individuals belong to families *(elderly belong to couples)*

- **Collective model** of the family

\[
\max_{\{G_t, h_{it}, c_{it}\}} \sum_{t=w,r} \sum_{i=1,2} \pi_{it} \left[u(c_{it}) + \frac{\alpha}{1 - \frac{1}{\gamma}} \left(1 - \bar{h}_t - h_{it}\right)^{1 - \frac{1}{\gamma}}\right]
\]

s.t.

\[
C_t = \left[aG_t^{1 - \frac{1}{\eta}} + (1 - a) (h_{1t} + h_{2t})^{1 - \frac{1}{\eta}}\right]^{\frac{\eta}{\eta - 1}}
\]

\[
C_t = \sum_{i=1,2} c_{it}
\]

\[
\sum_{i=1,2} \left(w_i \bar{h}_t + b_i\right) = G_w + G_r
\]

- **Elasticity-ratio formula** does not depend on Pareto weights \(\pi_{it}\)

Violante, Discussion of Rogerson-Wallenius: "Retirement, Home Production, and Labor Supply Elasticities"
Family

• New elasticity-ratio formula:

\[
\frac{\gamma}{\eta} = \frac{\log \left(\frac{1-h_{1r}}{1-h-h_{1w}} \right)}{\log \left(\frac{h_{1r}+h_{2r}}{h_{1w}+h_{2w}} \right) - \log \left(\frac{G_r}{G_w} \right)}
\]
Family

- New elasticity-ratio formula:

\[
\frac{\gamma}{\eta} = \frac{\log \left(\frac{1-h_{1r}}{1-h-h_{1w}} \right)}{\log \left(\frac{h_{1r}+h_{2r}}{h_{1w}+h_{2w}} \right) - \log \left(\frac{G_r}{G_w} \right)}
\]

- Now, home-production time of both spouses shows up in formula

- For married couples, basically no change in total HP time from age 60-64 to 65+ for the couple

Family

• New elasticity-ratio formula:

\[
\frac{\gamma}{\eta} = \frac{\log \left(\frac{1-h_1r}{1-h-h_1w} \right)}{\log \left(\frac{h_{1r}+h_{2r}}{h_{1w}+h_{2w}} \right) - \log \left(\frac{G_r}{G_w} \right)} = \frac{\log \left(\frac{1-0.20}{1-0.26-0.15} \right)}{\log (1) - \log (0.90)} = 2.9
\]

• Now, home-production time of both spouses shows up in formula

• For married couples, basically no change in total HP time from age 60-64 to 65+ for the couple