Inflation Expectations and Consumption Expenditure

Francesco D’Acunto
University of Maryland

Daniel Hoang
Karlsruhe Institute of Technology

Michael Weber
University of Chicago

August 14, 2015
Motivation

In the current situation, where nominal interest rates are constrained because they can’t go below zero, a small increase in expected inflation could be helpful. It would lower real borrowing costs, and encourage spending on big-ticket items like cars, homes and business equipment.

Christina Romer (2013)
Research Question

- Do higher inflation expectations lead to higher consumption?
- Monetary policy constrained when zero lower bound (ZLB) binds
- Higher inflation expectations lower real interest rates with binding ZLB
- Fiscal multipliers increase with higher inflation when ZLB binds
- **But**: precautionary savings channel, preference assumptions, inflation tax on liquid asset, income effects, etc.

⇒ Relationship inflation expectations ⇔ consumption empirical question
This Paper

- Relationship btw inflation expectations & willingness to purchase
- Use novel German household data for sample Jan 2000 to Dec 2013
- Unexpected rise in value-added tax as shock to inflation expectations
- Match German & foreign HHs in DiD research design for identification

Main finding: Households which expect inflation to increase 9% more likely to purchase durables

Effect stronger for more educated, high-income, urban households
Overview of Results: Time-Series Evidence

- HH with positive inflation expectations 9% more likely to purchase durables in XS
- 19% after announcement and before taking effect of VAT (11/05 – 12/06): blue dots
Related Literature

- Theoretical literature on stabilization role of inflation
 - **Historical perspective**: Romer, Romer (2013), Eggertsson (2008)

- Household survey data on inflation expectations
Household’s Problem

- Representative household derives flow utility from nondurable consumption, C_t, and stock of durable consumption, D_t and maximes:

$$
\beta^s \sum_{s=0}^{\infty} \left(\frac{C_{t+s}^{1-\gamma}}{1-\gamma} + \frac{D_{t+s}^{1-\gamma}}{1-\gamma} \right)
$$

s.t. \[P_t C_t + P_t [D_t - (1 - \theta)D_{t-1}] + B_{t+1} = Y_t + R_t B_t. \]

β: time discount
γ: coefficient of relative risk aversion
θ: depreciation rate
P_t: price index
R_t: gross nominal interest rate
B_t: nominal bond holdings
Y_t: nominal endowment
NB: WLOG flow of durable consumption proportional to stock with factor of 1
First-Order Conditions

- Intertemporal Euler equation:

\[
\left(\frac{C_{t+1}}{C_t} \right)^\gamma = \beta \frac{R_{t+1}}{\pi_{t+1}}
\]

Higher inflation \Rightarrow drop in consumption growth with fixed R_{t+1}, and $\gamma > 0$

- Intratemporal Euler equation:

\[
\left(\frac{C_t}{D_t} \right)^\gamma = \left[1 - \frac{\pi_{t+1}}{R_{t+1}}(1 - \theta) \right].
\]

Higher inflation \Rightarrow intratemporal substitution from nondurables to durables
Potential Caveats

- Fisher equation *accounting identity*; no direction of adjustment

- Nominal rates do not move sufficiently to offset changes in inflation

- Future marginal utility not affected by shock to inflation

- Fix future nominal endowment

- No uncertainty

- No household heterogeneity

⇒ Sign of relationship empirical question!
Data Sources

- European Union harmonized survey on consumption climate
- Administered in Germany by GfK (market research company)
- Representative sample of 2,000 German households every months
- Questions about aggregate and personal economic expectations
- Repeated cross section of households
- Sample period from January 2000 to December 2013
- Rich demographics (age, income, marital status, city size, kids, job)
- Macro aggregates (unemployment, uncertainty, Dax, interest rates)
Pros and Cons of Data

■ Pros
 ■ Unique natural experiment for causal identification
 ■ Micro data allows study at level of actual decision maker
 ■ Study household heterogeneity and control for wealth effects
 ■ Examine effect over time
 ■ Expectations do not affect aggregate consumption

■ Cons
 ■ No panel, but rich set of demographics and individual expectations
 ■ Only qualitative question, but Binder (2015): households have no clue
 ■ Only willingness to purchase, but tracks actual spending closely
Survey Questions I

Question 8

Given the current economic situation, do you think it’s a good time for your households to buy larger items such as furniture, electronic items, etc.?

Answer choices: “it’s neither good nor bad time,” “it’s bad time,” or “it’s a good time.”
Question 3

How will consumer prices evolve during the next twelve months compared to the previous twelve months?

Answer choices: “prices will increase more,” “prices will increase by the same,” “prices will increase less,” “prices will stay the same,” or “prices will decrease.”

Create a dummy that equals 1 when households answer “prices will increase more.”
Inflation Expectations over time

- Inflation expectation start building up beginning of 2006
- Spike in December of 2006
Durable Inflation and lagged Inflation Expectations

- Increase in CPI inflation in 2007 driven by durable goods inflation subject to VAT increase
- Lagged inflation expectations and standardized durable inflation highly correlated
Readiness to Spend and Real Durable Consumption

- Positive correlation between purchasing propensity and actual purchases
- Most positive observation in last quarter before VAT increase
- Large negative observation in quarter of increase
Baseline Specification: Multinomial Logit

- Assume survey answer is random variable y
- Define the response probabilities as $P(y = t|X)$
- X contains unit vector, and a rich set of household-level observables
- Assume the distribution of the response probabilities is

$$P(y = t|X) = \frac{e^{X\beta_t}}{1 + \sum_{z=1,2} e^{X\beta_z}},$$

- Estimate β_t via maximum likelihood
- Marginal effect: derivative of $P(y = t|x)$ with respect to x
- Empirically: define “it’s neither good nor bad time” as baseline
Baseline Specification

Marginal Effects: \[
\frac{\partial P(y = t|x)}{\partial x} = P(y = t|x) \left[\beta_{tx} - \sum_{z=0,1,2} P(y = z|x) \beta_{zx} \right]
\]

<table>
<thead>
<tr>
<th></th>
<th>Bad time</th>
<th>Good time</th>
<th>Bad time</th>
<th>Good time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Inflation Increase</td>
<td>4.61***</td>
<td>6.24***</td>
<td>2.25 **</td>
<td>7.49***</td>
</tr>
<tr>
<td></td>
<td>(1.09)</td>
<td>(1.62)</td>
<td>(0.91)</td>
<td>(1.52)</td>
</tr>
<tr>
<td>Past Inflation</td>
<td></td>
<td></td>
<td>6.32***</td>
<td>-3.42***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.48)</td>
<td>(0.28)</td>
</tr>
<tr>
<td>Pseudo R²</td>
<td>0.0031</td>
<td></td>
<td>0.0161</td>
<td></td>
</tr>
<tr>
<td>Nobs</td>
<td>326,011</td>
<td></td>
<td>321,496</td>
<td></td>
</tr>
</tbody>
</table>

Households which expect inflation to increase

- 7% more likely to answer “good time to purchase durables”
- BUT also 2% to 4.5% more likely to reply “bad time to purchase durables”
Empirical Results

Demographics, Expectations, and Macro Aggregates

- HH characteristics shape purchasing propensities (age, income, ...)
 - Characteristics might be systematically related to inflation expectations

- Economic outlook can affect cross-sectional relationship
 - Optimistic households might expect high growth and low inflation

- Household might be bullish or bearish about the economy
 - w/ Philips curve in mind: answer high growth and high inflation
Empirical Results

Control for Demographics, Outlook, and Macro-aggregates

Marginal Effects:
\[
\frac{\partial P(y = t|x)}{\partial x} = P(y = t|x) \left[\beta_{tx} - \sum_{z=0,1,2} P(y = z|x)\beta_{z}\right]
\]

<table>
<thead>
<tr>
<th></th>
<th>Bad time</th>
<th>Good time</th>
<th>Bad time</th>
<th>Good time</th>
<th>Bad time</th>
<th>Good time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>Inflation increase</td>
<td>2.42***</td>
<td>7.55***</td>
<td>-0.78</td>
<td>8.88***</td>
<td>0.51</td>
<td>8.75***</td>
</tr>
<tr>
<td></td>
<td>(0.94)</td>
<td>(1.56)</td>
<td>(0.83)</td>
<td>(1.60)</td>
<td>(0.73)</td>
<td>(1.16)</td>
</tr>
<tr>
<td>Past Inflation</td>
<td>5.70***</td>
<td>-3.00***</td>
<td>3.76***</td>
<td>-2.00***</td>
<td>3.31***</td>
<td>-1.14***</td>
</tr>
<tr>
<td></td>
<td>(0.45)</td>
<td>(0.30)</td>
<td>(0.33)</td>
<td>(0.35)</td>
<td>(0.20)</td>
<td>(0.23)</td>
</tr>
</tbody>
</table>

	X	X	X	X	X	X
Demographics						
Individual expectations	X	X	X	X	X	X
Macro Aggregates	X	X			X	X
Pseudo R²	0.0292	0.0654	0.0762			
Nobs	244,497	219,799	219,799			

- HH which expect inflation to increase 8% more likely to answer “good time to purchase”
- Positive effect on “bad time to purchase durables” disappears
Empirical Results

Control for **Demographics, Outlook, and Macro-aggregates**

Marginal Effects:

\[
\left(\frac{\partial P(y = t|x)}{\partial x} \right) = P(y = t|x) \left[\beta_{tx} - \sum_{z=0,1,2} P(y = z|x) \beta_{zx} \right]
\]

<table>
<thead>
<tr>
<th>Inflation Increase</th>
<th>Bad time</th>
<th>Good time</th>
<th>Bad time</th>
<th>Good time</th>
<th>Bad time</th>
<th>Good time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>2.42***</td>
<td>7.55***</td>
<td>-0.78</td>
<td>8.88***</td>
<td>0.51</td>
<td>8.75***</td>
</tr>
<tr>
<td>(2)</td>
<td>0.94</td>
<td>1.56</td>
<td>0.83</td>
<td>1.60</td>
<td>0.73</td>
<td>1.16</td>
</tr>
<tr>
<td>Past Inflation</td>
<td>5.70***</td>
<td>-3.00***</td>
<td>3.76***</td>
<td>-2.00***</td>
<td>3.31***</td>
<td>-1.14***</td>
</tr>
<tr>
<td>(1)</td>
<td>0.45</td>
<td>0.30</td>
<td>0.33</td>
<td>0.35</td>
<td>0.20</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Demographics	X	X	X	X	X	X
Individual expectations	X	X	X	X	X	X
Macro Aggregates	X	X	X	X	X	X
Pseudo R²	0.0292	0.0654	0.0762			
Nobs	244,497	219,799	219,799			

- HH which expect inflation to increase 8% more likely to answer “good time to purchase”
- Positive effect on “bad time to purchase durables” disappears
Empirical Results

Control for Demographics, Outlook, and Macro-aggregates

Marginal Effects:
\[
\frac{\partial P(y = t|x)}{\partial x} = P(y = t|x) \left[\beta_{tx} - \sum_{z=0,1,2} P(y = z|x) \beta_{zx} \right]
\]

<table>
<thead>
<tr>
<th></th>
<th>Bad time</th>
<th>Good time</th>
<th>Bad time</th>
<th>Good time</th>
<th>Bad time</th>
<th>Good time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflation increase</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td></td>
<td>2.42***</td>
<td>7.55***</td>
<td>-0.78</td>
<td>8.88***</td>
<td>0.51</td>
<td>8.75***</td>
</tr>
<tr>
<td></td>
<td>(0.94)</td>
<td>(1.56)</td>
<td>(0.83)</td>
<td>(1.60)</td>
<td>(0.73)</td>
<td>(1.16)</td>
</tr>
<tr>
<td>Past Inflation</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td></td>
<td>5.70***</td>
<td>-3.00***</td>
<td>3.76***</td>
<td>-2.00***</td>
<td>3.31***</td>
<td>-1.14***</td>
</tr>
<tr>
<td></td>
<td>(0.45)</td>
<td>(0.30)</td>
<td>(0.33)</td>
<td>(0.35)</td>
<td>(0.20)</td>
<td>(0.23)</td>
</tr>
</tbody>
</table>

Demographics | X | X | X | X | X | X | X |
Individual expectations | X | X | X | X | X |
Macro Aggregates | X | X |
Pseudo R² | 0.0292 | 0.0654 | 0.0762 |
Nobs | 244,497 | 219,799 | 219,799 |

- HH which expect inflation to increase 8% more likely to answer “good time to purchase”
- Positive effect on “bad time to purchase durables” disappears
Individual Economic Outlook

Marginal Effects:

\[
\frac{\partial P(y = t|x)}{\partial x} = P(y = t|x) \left[\beta_{tx} - \sum_{z=0,1,2} P(y = z|x) \beta_{zx} \right]
\]

<table>
<thead>
<tr>
<th></th>
<th>Higher growth outlook</th>
<th>Lower growth outlook</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bad time (1)</td>
<td>Good time (2)</td>
</tr>
<tr>
<td>Inflation increase (1)</td>
<td>-0.58</td>
<td>8.41***</td>
</tr>
<tr>
<td></td>
<td>(1.15)</td>
<td>(1.91)</td>
</tr>
<tr>
<td>Past Inflation (1)</td>
<td>4.77***</td>
<td>-3.55***</td>
</tr>
<tr>
<td></td>
<td>(0.49)</td>
<td>(0.38)</td>
</tr>
<tr>
<td></td>
<td>Bad time (3)</td>
<td>Good time (4)</td>
</tr>
<tr>
<td>Inflation increase (3)</td>
<td>2.89***</td>
<td>7.29***</td>
</tr>
<tr>
<td></td>
<td>(0.90)</td>
<td>(1.42)</td>
</tr>
<tr>
<td>Past Inflation (3)</td>
<td>6.57***</td>
<td>-3.20***</td>
</tr>
<tr>
<td></td>
<td>(0.47)</td>
<td>(0.28)</td>
</tr>
</tbody>
</table>

- HH which expect inflation to increase 8% more likely to answer “good time to purchase”
- **Positive effect** on “bad time to purchase” contained among HH with negative outlook
Exogenous Shock to Inflation Expectations

- Richness of micro data many desirable features
- BUT: cannot rule out movements along the supply curve
- Here: *expected* inflation and propensity to buy mitigates concern
- Ideal experiment: shock to inflation expectations that does not affect households’ willingness to purchase durables through channels different from expectations of rising prices
- Follow narrative approach of Romer and Romer (2010)

⇒ Unexpected increase in value-added tax (VAT)
VAT Experiment of 2007 I

- Nov 2005: new government announces increase in VAT by 3%
- Jan 2007: entry into force of VAT increase
- Pre-election: promise not to increase VAT
- VAT increase legislated to consolidate budget
- Not related to prospective economic conditions
- Exogenous tax change acc to Romer and Romer nomenclature
VAT Experiment of 2007 II

- Inflation expectations build up during 2006
- Germany part of Euro zone and no independent monetary policy
- Nominal rate did not increase to offset inflation expectations
- Experiment resembles unconventional fiscal policy described in Correia, Fahri, Nicolini, Teles (2013)
- Feldstein (2002) proposition for Japan: Pre-announced VAT increases
- Stimulate inflation expectations & private spending
VAT as Shock to Inflation Expectations

- Inflation expectation start building up beginning of 2006
- Spike in December of 2006
Difference-in-Differences Matching Estimator

- All Germans treated by VAT shocks
- Micro data for France, UK, Sweden from EU harmonized survey
- National statistical offices and GfK subsidiaries
- Match German & foreign households with nearest-neighbor algorithm
- Matching categories: gender, age, education, income, social status
- Estimate Average Treatment Effect of VAT shock:

 \[
 (\overline{Dur}_{\text{German}, \text{post}} - \overline{Dur}_{\text{German}, \text{pre}}) - (\overline{Dur}_{\text{foreign}, \text{post}} - \overline{Dur}_{\text{foreign}, \text{pre}})
 \]
Parallel-Trends Identification Assumption 1

- Control group behaves similarly to Germans before VAT shock
- Behavior of control group after shock how Germans behaved absent of it
Parallel-Trends Identification Assumption II

Parallel trends in inflation expectations *before* the announcement of the VAT increase
Parallel-Trends Identification Assumption III

Parallel trends in durable propensity *before* the announcement of the VAT increase
Further Identification Assumption

- Balanced households’ characteristics after matching ()
- Treated and control households distributed across full distribution ()
- Positive effect of inflation expectations on consumption expenditure at micro level for all countries ()
Further Identification Assumption

- Balanced households’ characteristics after matching (√)

- Treated and control households distributed across full distribution ()

- Positive effect of inflation expectations on consumption expenditure at micro level for all countries ()
Empirical Results

Further Identification Assumption

- Balanced households’ characteristics after matching (√)
- Treated and control households distributed across full distribution (√)
- Positive effect of inflation expectations on consumption expenditure at micro level for all countries ()
Further Identification Assumption

- Balanced households’ characteristics after matching (√)
- Treated and control households distributed across full distribution (√)
- Positive effect of inflation expectations on consumption expenditure at micro level for all countries (√)
Empirical Results

Average Treatment Effect of VAT shock

- German and foreign households behave similarly before shock
- Immediate increase of purchasing behavior of Germans after shock
- Effect builds up during 2006
- Reversion to normal after actual VAT increase
Household Heterogeneity

Positive effect of inflation expectations on willingness to spend stronger for

- More educated households by Education
- High income households by Income
- Urban households by City Size
- Unconstrained households by Financial Constraints
Robustness

- Different left-hand side variables: cars, furniture, etc.
- Households expecting higher inflation less likely to save
- Households expecting deflation less likely to consume
- Split by individual economic outlook
- Inflation dummies for all categories
- OLS and ordered probit specification
- Year and month dummies
Durable Consumption versus Aggregate Demand

- HH with higher inflation expectations more willing to purchase durables
- We do not observe other components of consumption or investment
- Real GDP growth increased from 1.6% in 2005Q4 to 4.4% in 2006Q4
Permanent vs temporary Increases in Inflation Expectations

- Suggestion to unexpectedly increase inflation to inflate away debt
 - Hilscher, Raviv, Reis (2014): unlikely to substantially lower real debt

- Suggestion to permanently increase inflation targets
 - Mishkin (2011): occurrence of zero-lower bound periods too rare
 - Coibion, Gorodnichenko, Wieland (2012): optimal inflation rate < 2%
 - Gorodnichenko and Weber (2015): large costs of price adjustments
Permanent vs temporary Increases in Aggregate Demand

- Higher inflation expectations \Rightarrow higher purchasing propensity
- No evidence on persistence of increase in spending
- Effect in 2006 could be pull forward effects
- Consistent with intertemporal substitution channel
- Durable consumption growth & propensities decrease in 2007Q1
- BUT: no stark drop in GDP growth!
- German & foreign HHs behave similarly after VAT rise: back to normal
Fiscal vs Monetary Policy

- Models often rely on monetary policy to engineer higher inflation
- Cannot identify source of heterogeneity in survey expectations
- VAT experiment: fiscal policy as source of increases in expectations
- NK fiscal multiplier: substitution rather than income channel
- Unconventional discretionary fiscal policy in severe recessions
- Increase private incentives to spend while keeping budget balanced
Inflation Expectations: Good vs Bad Times

- Higher inflation to stimulate demand often prescribed in liquidity trap
- Key mechanism relies on nominal rates not moving sufficiently
- In XS: HH with higher inflation expectations should consume more
- Conjecture larger marginal effects during liquidity trap
- Preferred policy tool might differ but Feldstein (2002)
Identification vs Policy Implications

- HH characteristics shape purchasing propensities
- Control for those to interpret effect of inflation expectations causally
- Policy makers cannot condition on characteristics
 (conventional monetary policy or VAT increase studied here)
- Findings hold in aggregate and without controlling for characteristics
- Heterogeneous effects call for increased policy transparency
Follow-up Work

- What determines heterogeneity in inflation expectations?
- Hypothesis: Consumption bundle and frequency of purchase
- Test: AC Nielsen homescan data and own survey on household panel
Conclusion

- We document a positive cross-sectional relationship between households’ inflation expectation and their willingness to purchase durable goods.

- The positive effect is stronger for more educated, urban, working-age, and higher income households.

- Our findings provide support for conventional wisdom that temporarily higher inflation expectations can stir consumption expenditure.

- The heterogeneity across households and the delayed response in 2006 suggest scope for increased economic literacy and policy transparency.

- Discretionary fiscal policy in recessions: series of pre-announced VAT increases and a simultaneous Reduction in income tax rates.
Balancing of Variables: German and Foreign Households

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean Control</th>
<th>Mean Treated</th>
<th>t-stat</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>2.33</td>
<td>2.30</td>
<td>1.01</td>
<td>0.31</td>
</tr>
<tr>
<td>Male</td>
<td>0.47</td>
<td>0.47</td>
<td>0.22</td>
<td>0.82</td>
</tr>
<tr>
<td>Education</td>
<td>1.77</td>
<td>1.81</td>
<td>-1.15</td>
<td>0.25</td>
</tr>
<tr>
<td>Income</td>
<td>2.31</td>
<td>2.28</td>
<td>0.8</td>
<td>0.42</td>
</tr>
<tr>
<td>Social Status</td>
<td>2.60</td>
<td>2.61</td>
<td>-0.37</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Obs in common support: 5,108 | 1,431
Balancing of Variables: German and Foreign Households
Baseline Specification Foreign Households

<table>
<thead>
<tr>
<th></th>
<th>France (1)</th>
<th>Sweden (2)</th>
<th>UK (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflation Increase</td>
<td>2.65***</td>
<td>3.81***</td>
<td>4.65***</td>
</tr>
<tr>
<td></td>
<td>(0.37)</td>
<td>(0.53)</td>
<td>(0.61)</td>
</tr>
<tr>
<td>Past Inflation</td>
<td>−1.63***</td>
<td>−3.15***</td>
<td>−0.61</td>
</tr>
<tr>
<td></td>
<td>(0.15)</td>
<td>(0.55)</td>
<td>(0.19)</td>
</tr>
<tr>
<td>Demographics</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Individual expectations</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pseudo R²</td>
<td>0.0445</td>
<td>0.0288</td>
<td>0.0508</td>
</tr>
<tr>
<td>Nobs</td>
<td>163,419</td>
<td>176,829</td>
<td>113,774</td>
</tr>
</tbody>
</table>

Standard errors in parentheses

*$p < 0.10$, $**p < 0.05$, $***p < 0.01$
Baseline Specification by Education

Marginal Effects: \[\frac{\partial P(y = t|x)}{\partial x} = P(y = t|x) \left[\beta_{tx} - \sum_{z=0,1,2} P(y = z|x)\beta_{zx} \right] \]

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Individual expectations</th>
<th>Pseudo R^2</th>
<th>Nobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptschule</td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Realschule</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gymnasium</td>
<td>(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University</td>
<td>(4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Baseline Specification by Income

Marginal Effects:
\[
\frac{\partial P(y = t|x)}{\partial x} = P(y = t|x) \left[\beta_{tx} - \sum_{z=0,1,2} P(y = z|x) \beta_{zx} \right]
\]

<table>
<thead>
<tr>
<th>Income</th>
<th>Bad time (1)</th>
<th>Good time (2)</th>
<th>Bad time (3)</th>
<th>Good time (4)</th>
<th>Bad time (5)</th>
<th>Good time (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income ≤ 1,000</td>
<td>-0.99 (1.05)</td>
<td>8.98*** (1.68)</td>
<td>-0.55 (0.78)</td>
<td>8.51*** (1.51)</td>
<td>-1.09 (0.77)</td>
<td>10.48*** (2.03)</td>
</tr>
<tr>
<td>1,000 < Income ≤ 2,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,500 < Income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Inflation increase
- Past Inflation

Demographics: X X X X X X

Individual expectations: X X X X X X

Pseudo R²: 0.0655 0.0596 0.0504

Nobs: 96,555 112,710 16,477
Baseline Specification by City Size

\[
\text{Marginal Effects: } \frac{\partial P(y = t|x)}{\partial x} = P(y = t|x) \left[\beta_{tx} - \sum_{z=0,1,2} P(y = z|x) \beta_{zx} \right]
\]

<table>
<thead>
<tr>
<th>City \leq 2T</th>
<th>2T $<$ City \leq 20T</th>
<th>20T $<$ City \leq 100T</th>
<th>100T $<$ City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflation increase</td>
<td>Past Inflation</td>
<td>Demographics</td>
<td>Individual expectations</td>
</tr>
<tr>
<td>Bad time</td>
<td>Good time</td>
<td>Bad time</td>
<td>Good time</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Inflation increase</td>
<td>-1.23</td>
<td>5.81^{***}</td>
<td>0.18</td>
</tr>
<tr>
<td>(1.32)</td>
<td>(1.99)</td>
<td>(0.86)</td>
<td>(1.51)</td>
</tr>
<tr>
<td>Past Inflation</td>
<td>4.14^{***}</td>
<td>-1.96^{***}</td>
<td>2.98^{***}</td>
</tr>
<tr>
<td>(0.52)</td>
<td>(0.55)</td>
<td>(0.36)</td>
<td>(0.34)</td>
</tr>
<tr>
<td>Demographics</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Individual expectations</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pseudo R^2</td>
<td>0.0738</td>
<td>0.0632</td>
<td>0.0721</td>
</tr>
<tr>
<td>Nobs</td>
<td>17,833</td>
<td>74,937</td>
<td>59,674</td>
</tr>
</tbody>
</table>

Standard errors in parentheses

\(*p < 0.10, \; **p < 0.05, \; ***p < 0.01 \)
Baseline Specification by Financial Constraints

Marginal Effects: \[
\frac{\partial P(y = t|x)}{\partial x} = P(y = t|x) \left[\beta_{tx} - \sum_{z=0,1,2} P(y = z|x) \beta_{zx} \right]
\]

<table>
<thead>
<tr>
<th>Inflation Increase</th>
<th>Unconstrained</th>
<th>Constrained</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bad time (1)</td>
<td>Good time (2)</td>
</tr>
<tr>
<td>Inflation Increase</td>
<td>-0.57 (0.66)</td>
<td>10.42*** (1.80)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Past Inflation</th>
<th>Unconstrained</th>
<th>Constrained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Past Inflation</td>
<td>3.45*** (0.27)</td>
<td>-2.50*** (0.38)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pseudo R²</th>
<th>Unconstrained</th>
<th>Constrained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudo R²</td>
<td>0.0615</td>
<td>0.0608</td>
</tr>
</tbody>
</table>

Nobs | 98,344 | 121,455 |