Payments, Credit & Asset Prices

Monika Piazzesi Martin Schneider
Stanford & NBER Stanford & NBER

CITE August 13, 2015
Dollar payments; quarterly at annual rates

Enduser

Interbank w/ reserves

Piazzesi & Schneider
Payments, Credit & Asset Prices
CITE August 13, 2015 2 / 31
Measures of money

Zero Maturity Money

Reserves

$ Trillions

$ Trillions

05 07 09 11

05 07 09 11
Simple model of asset pricing & payments

- **Endusers** = households & institutional investors
 - use deposits to pay for goods & securities
 - ”deposits” = funds precommitted for payments
 (incl. MMMF shares, assets in sweep arrangements, credit lines,...)

- **Banking sector handles payment instructions**
 - manages liquidity via reserves & interbank credit
 - deposit creation requires costly leverage
 - cost of leverage declines with value & safety of bank assets

- **Government trades in securities & issues interest bearing reserves**

⇒ Determine inside money supply, nominal price level & real asset prices
Key mechanisms

- Determination of price level: \(PT = \bar{v}D \)
 - endog. supply of deposits from banks’ leverage choice
 - \(T \) includes institutional investor trades

- Intermediary asset pricing
 - banks value assets as collateral (e.g. low overnight rate)
 - inst. investors’ valuation depends on cost of deposits

- Increase in uncertainty about assets payoffs
 - lowers supply of deposits → lower price level
 - lowers demand for deposits → higher price level

- Effects of policy on price level & real asset prices
 - work through changes in liquidity & collateral benefits
 - depend on financial structure & policy regime
 - scarce reserves vs abundant liquidity
 - higher interest on reserves: lower price level if less bank assets nominal
 - lower interest rate increases or decreases asset prices
Related Literature

- **asset pricing with constrained investors**
 Lucas 90, Kiyotaki-Moore 97, Geanakoplos 00, He-Krishnamurthy 12,
 Buera-Nicolini 14, Lagos-Zhang 14, Bocola 14, Moreira-Savov 14

- **monetary policy & financial frictions**
 Bernanke-Gertler-Gilchrist 99, Curdia-Woodford 10, Gertler-Karadi 11,
 Gertler-Kiyotaki-Queralto 11, Christiano-Motto-Rostagno 12,
 Brunnermeier-Sannikov 14

- **banks & liquidity shocks**
 Diamond-Dybvig 83, Bhattacharya-Gale 87, Allen-Gale 94,
 Holmstrom-Tirole 98, Bianchi-Bigio 14, Drechsler-Savov-Schnabl 14

- **multiple media of exchange**
 Freeman 96, Williamson 12, 14, Rocheteau-Wright-Xiao 14,
 Andolfatto-Williamson 14, Lucas-Nicolini 15

- **interest on reserves**
 Sargent-Wallace 85, Hornstein 10, Kashyap-Stein 12, Woodford 12, Ireland
 13, Cochrane 14, Ennis 14
Model: enduser layer

- Constant aggregate output
 - mass one of trees, each yields x units of fruit

- Households
 - risk neutral with discount rate δ
 - can invest in trees, deposits, overnight credit, bank equity
 - cannot hold reserves (≠ numeraire)

- Payments
 - consumption s.t. deposit-in-advance constraint $PC \leq \bar{v}D$
 - equilibrium deposit rate i_D low enough so constraint binds
 - constant velocity: $PT = \bar{v}D$, here $T = C = x$

- Will add later
 - other intermediaries
 - payment for securities transactions
Valuation of trees

- Trees = all productive assets
 - including human capital, housing etc
 - cannot be sold short

- Bank ownership of trees
 - only subset of β trees can be held by bank
 - "bank trees" trade at nominal price Q^b

- Capture uncertainty about tree payoff by high discount rate
 - households act as if they believe payoffs decline at rate s
 - if household is marginal investor in tree:

$$\text{steady state price} = \frac{\text{payoff}}{\delta + s}$$

- can be derived as ambiguity premium (Ilut-Krivenko-Schneider 2015)
Model structure

Households → deposits → Banks → equity → Banks

Trees
Bank trees

Reserves

 overnight credit
Bank layer

- Banks owned by households
 - maximize shareholder value $E \sum_t \exp(-\delta t) y_t^b$

- Subperiod 1: liquidity management

- Subperiod 2: portfolio & capital structure choice

- Constant returns & costless adjustment of equity
 - no endogenous state variables
Bank layer: liquidity management

- **Subperiod 1**
 - bank enters with deposits D, reserves M; enduser transactions $\tilde{\nu} D$
 - $\phi \tilde{\nu} D = \text{net funds sent to other banks (or received if } \phi < 0)$
 - ϕ iid across banks, cdf G, $E[\phi] = 0$

- **Bank layer liquidity constraint**
 \[\phi \tilde{\nu} D \leq M + F' \]

 - threshold rule: borrow overnight iff $\phi > M / \tilde{\nu} D$
 - more interbank payments if more transactions, overnight credit

- **Liquidity benefit of holding reserves**
 - high if multiplier D / M, cost of interbank credit high
 - zero if reserves large relative to deposits (*abundant liquidity*)
Banking sector: portfolio choice

- Shareholder payout

\[
P y^b = M(1 + i_R) - M' + (Q^b + P_x)\theta - Q^b\theta' - D(1 + i_D) + D' - F(1 + i) + F' - c(\ell)L
\]

- Leverage cost per dollar of debt

\[
\ell = \frac{L}{K} = \frac{\text{debt}}{\text{collateral}} = \frac{D' + \max\{F', 0\}}{\rho(s)Q^b\theta' + M' + \min\{F', 0\}}
\]

- \(c(\ell)\) strictly increasing \& convex; cost \(cL\) paid to household
- weight \(\rho(s) < 1\) on uncertain trees

- Optimal portfolio \& capital structure choice

- equate returns on all assets \& liabilities to return on equity \(\delta\)
- tradeoff theory: liquidity benefit vs leverage cost of debt
Model structure

Households → deposits → Banks

Banks → equity → Banks

Banks → overnight credit → Reserves

Trees

Bank trees

Reserves
Equilibrium

- **Government**
 - consolidate Fed and Treasury
 - fix reserves M & reserve rate i_R
 - lump sum transfers adjust to satisfy budget constraint

- **Market clearing**
 - goods, reserves, overnight credit, deposits, trees

- **Steady state equilibria**
 - constant growth rate of $M = \text{inflation}$
 - neutrality: price level \propto reserves
 - reduce to 2 equations in $(D/M, \ell)$ or 2 prices $(i, 1/P)$
 - comparative statics
Liquidity management curve

- Prices s.t. banks choose optimal money multiplier D/M
- Slopes down in $(i - \pi, 1/P)$ plane:
 - high price level (low $1/P$)
 - $= \text{hi } D/T$
 - $= \text{hi multiplier } D/M$
 - $= \text{lots of overnight credit}$
 - $= \text{hi } i - i_R$
 - flat if abundant liquidity:
 - lo price level (high $1/P$)
 - $= \text{lo multiplier } D/M$
 - $= \text{no overnight credit}$
 - $= i = i_R$
Market participation & asset pricing

- Only banks lend overnight & hold all trees they have access to
 - banks’ collateral benefit lowers short rate, increases tree price
 - overnight credit & bank trees unattractive to households

- Bank Euler equations price assets
 - overnight credit: lower real interest rate if higher leverage
 \[\delta = (i - \pi) + \kappa(\ell) \]
 collateral benefit
 - trees: higher price if higher leverage, lower uncertainty premium \(s \)
 \[Q^b = \frac{P\chi}{\delta + s - \kappa(\ell)} \]
Capital structure curve

- Prices s.t. banks choose optimal leverage ratio ℓ
- Slopes upward in $(i - \pi, 1/P)$ plane:

 - higher interest rate
 - \equiv lo leverage
 - \equiv lo deposits
 - \equiv lo price level (hi $1/P$)

 - steeper if banks’ share of nominal assets higher
 (lower price level increases collateral value)
Equilibrium with scarce reserves

- Curves cut at $i > i_R$; high money multiplier D/M; high P
- Active interbank credit market
Equilibrium with abundant liquidity

- Curves cut at $i = i_R$; low money multiplier D/M; low P
- Interbank credit dries up, fewer payments
Increase in uncertainty

- Comparative statics: increase in spread s
 - new steady state: lower tree prices, higher premia on trees

- Less collateral
 - less deposits at any i
 (CS shifts right)

- Lower multiplier D/M
 - less overnight credit
 - lower interest rate
 (move along LM)
Central bank asset purchases

- Government buys bank trees at market price
- New steady state s.t. \(M^* - M = \frac{P_x}{(\delta + s - \kappa(\ell))} \)

- More reserves
 - for any \(P \), lower \(D/M \)
 - lower credit & \(i \)
 - (LM shifts left)

- More collateral
 - more deposits at any \(i \)
 - (CS shifts left)

- More nominal collateral
 - (CS steeper)

- Less exposure to \(s \)!

\[\downarrow \text{real rate} \]
\[\downarrow \text{bank leverage} \]
Policy with abundant liquidity: reserve rate

- Higher interest on reserves = higher i_R

- Same $i - i_R$ at any D/M
 \Rightarrow less deposits at any i
 (LM shifts up)

- Less deposits
 \Rightarrow lower leverage
 \Rightarrow higher interest rate
 (move along CS)

- Less deflationary if more nominal collateral
 (CS steeper)
Nominal long term assets

- Debt issued against trees
 - consols with nominal payoff ν
 - leveraged trees: nominal payoff $P - \nu$
 - both payoff streams discounted at $\delta + s$
 - banks may hold consols, but not leveraged trees
 - interpretation: mortgages, long term govmt debt

- Equilibrium with nominal long term assets
 - banks hold all nominal assets
 - steeper CS curve

- Helicopter drop of reserves no longer neutral
 - higher price level lowers value of other nominal collateral
 - share of reserves / all nominal assets matters!

- Effect on policy experiments
 - higher reserve share makes CS steeper
Summary: monetary & fiscal policy

- Two key effects of asset purchases
 - liquidity management with more reserves:
 for any P, lower D/M, less interbank credit, lower i (LM left)
 - capital structure with more collateral
 issue more deposits at any i (CS left)
 ⇒ real interest rate declines & price level increases

- With scarce reserves: permanent liquidity effect
 - even if central bank purchases overnight credit
 - more reserves → less interbank credit
 ∼ more collateral → more deposits at any i

- Even with abundant liquidity, price level depends on collateral
 - asset purchases may swap bad for good collateral
 - with nominal assets, helicopter drop affects collateral

- Change interest on reserves with abundant liquidity
 - effect on price level depend on slope of CS
Extensions

- “Carry traders”
 - firms that invest in subset of trees, borrow from banks (e.g. broker-dealer funding via triparty repo)
 - increase in uncertainty perceived by carry traders lowers interest rate & price level, also get lower outstanding credit

- Credit lines
 - work like deposits if leverage cost depends on commitments

- Banks’ internal rate of return $> \delta$
 - e.g. inefficiency within bank
 - banks need not hold all eligible assets; flatter CS

- Variable velocity
 - deposits in the utility function $\Rightarrow D/P = f(i_D, T)$
 - flattens CS curve

- Curvature in utility from consumption
 - discount rate δ can decline with uncertainty
Active traders

- Competitive firms owned by household
 - issue equity, invest in deposits & subset of $\hat{\beta}$ trees
 - each firm optimistic about one tree, perceived spread $\hat{s} < s$
 - identity of favorite tree within subset changes with probability $\hat{\nu} \leq 1$
 - all trades must be paid with deposits or intraday credit

- Subperiod 1
 - budget constraint ($z = 1$ if identity of favorite tree changes)
 $$z\hat{Q}\theta' = I + \hat{D}$$
 - limit on intraday credit
 $$I \leq \hat{\gamma}\hat{D}$$
 - limit binds if $i_D - \pi < \delta$

- Subperiod 2: settle intraday position, adjust portfolio & equity
- Payments: $\bar{v}\hat{Q}\hat{\beta}$ cleared, $\bar{v}D = \hat{\nu}\hat{Q}\hat{\beta}/(1 + \hat{\gamma})$ paid
Equilibrium with active traders
Equilibrium with active traders

- Assume \(\hat{s} \) low enough so traders hold all eligible trees, valuation is
 \[
 \delta - (i_D - \pi) = (1 + \hat{\gamma})(\hat{r} - \pi - (\delta + \hat{s}))
 \]

 - return on tree \(\hat{r} \) must compensate for lo return on deposits

- Equilibrium deposit holdings
 \[
 \hat{D}(1 + \hat{\gamma}) = \frac{\hat{\beta}xP}{\delta + \hat{s} + \frac{\delta - (i_D - \pi)}{1 + \hat{\gamma}}}
 \]

 - deposits & transactions \(\bar{v}D \) now increase with deposits rate \(i_D \)
 - more efficient netting (higher \(\hat{\gamma} \)): less deposits needed

- Determination of price level
 \[
 PC + \hat{v}\hat{D} = \bar{v}D
 \]

 - increase in asset trading = ”drop in velocity” in quantity equation
 - money creation need not increase price level
Asset price booms & inflation

- Increase in spread \hat{s} perceived by active traders

- Less asset transactions (\sim higher goods velocity)
 $= \text{for any } P, \text{lower } D/M$
 $= \text{less credit & } i$
 (LM shifts left)

- Less deposit demand
 $= \text{less leverage for any } i$
 (CS shifts left)

- Inflationary!
Equilibrium with active traders

- Decrease in uncertainty *perceived by active traders*
 - higher demand for deposits, lower deposit rate
 - banks leverage more, lower overnight rate & higher bank tree prices
 - decrease in price level as less deposits in goods market
 - more payments in both layers & more deposits held by inst. investors

- Monetary policy that lowers real interest rate
 - lowers deposits rate & trading cost of active traders
 - active trader trees increase in value & become larger share of total
 - lower average uncertainty premia since active traders perceive $\hat{s} < s$
This paper

- Simple model of asset pricing & payments
 - deposits needed for payment (for goods, securities)
 - banking sector handles payments (reserves & interbank market)
 - bank leverage is costly, responds to collateral value of bank assets

- Links securities market – payments system
 1. banks own securities, lend short term to institutional investors
 2. institutional investors require deposits for trading

- Increased uncertainty about asset payoffs
 1. lowers supply of deposits → lower price level, real interest rate
 2. lowers demand for deposits → higher price level, real interest rate

- Monetary policy
 - works through changes in liquidity & collateral benefits
 - affects asset prices through cost of inst. investor leverage & trading