A multi-layer network perspective on systemic risk

Frank Schweitzer

In collaboration with: R. Burkholz, A. Garas
Chair of Systems Design at ETH Zurich

- **Main Research Areas**
 - **Economic Networks & Social Organizations**
 - e.g. ownership networks, R&D networks, financial networks, ...
 - e.g. online communities, OSS projects, animal societies, ...

- **Methodological Approach:** Data Driven Modeling
 - **economic databases**: ORBIS, Bloomberg, patent databases
 - **online data**: user interaction, communication records, blogs
What is the problem?

US banks failed during the crisis

Failed banks: 344
Losses: 642.3 bns of $
What is the problem?

Possible explanations:

- **Cascades**: spreading failure \(\Rightarrow\) domino
 - direct interaction: failure affects connected agents

- **Macroeconomic feedback**: indirect coupling \(\Rightarrow\) popcorn
 - no interaction, but externally driven toward critical state

Data: FDIC (Federal Deposit Insurance Corporation), 2011
Risk as endogeneous to the system

Systemic risk

- risk that a whole system comprised of many agents fails
- macroscopic property that emerges from the nonlinear interactions of agents and is amplified through macroscopic feedback

- complements exogeneous risk
- systems generate the conditions of their failure themselves
- failure of “the few” gets amplified
 ⇒ interaction
Bottom-up Approach

- Internal agent dynamics

\[s_i(t + 1) = \Theta[\phi_i(t, s, A) - \theta_i] \]

- Frailty \(\phi_i(t) > 0 \): depends on neighbors (interaction matrix \(A \))
- Threshold \(\theta_i \): individual conditions (heterogeneity)

- Dynamics of \(\phi_i(t) \) depends on
 - Degree distribution \(p(k) \), distribution of load to neighbors

- Probabilistic approach: prediction of systemic risk \(\varrho(t) \)
Predicting systemic risk

Mathematical network model
- various degree distributions $p(k)$
- different threshold distributions $p(\theta)$
- finite/infinite networks
- different load distribution mechanisms

Phase diagram of systemic risk

- **Heterogeneity of agents matters!**
 - $\mu \to 0$: increasing global instability
 - σ: measure of *initial heterogeneity* in θ;
 - small variations in initial conditions lead to complete failure
 - non-monotonous behavior: intermediate σ most dangerous
The need to combine two perspectives

- **Micro:** *Socioeconomic perspective*
 - strategic behaviour of single agents’ \Leftrightarrow network architecture

- **Macro:** *Physics/Computer science perspective*
 - statistical regularities of the network as a whole

- **Data-driven modeling:** infer interaction rules of agents

Networks are constructed

- **aggregation over time**
 - network density depends on time window
 - importance of nodes changes
 - temporal ordering cannot be preserved
Networks are reconstructed

- aggregation over activity
 - direct interactions are often unknown
 - aggregation at institutional level
 - decomposition heuristics
 - co-appearence \Rightarrow temporal network,
 - ranked activities \Rightarrow weights for links
 - core-periphery structure

<table>
<thead>
<tr>
<th>BANK NAME</th>
<th>STATE</th>
<th>TOTAL ASSETS</th>
<th>TOTAL DERIVATIVES</th>
<th>TOTAL FUTURES (EXCH TR)</th>
<th>TOTAL OPTIONS (EXCH TR)</th>
<th>TOTAL FORWARDS (OTC)</th>
<th>TOTAL SWAPS (OTC)</th>
<th>TOTAL OPTIONS (OTC)</th>
<th>TOTAL CREDIT DERIVATIVES (OTC)</th>
<th>SPOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPMORGAN CHASE BANK NA</td>
<td>OH</td>
<td>$1,842,735</td>
<td>$71,478,760</td>
<td>$1,060,040</td>
<td>$1,827,775</td>
<td>$11,961,454</td>
<td>$41,144,140</td>
<td>$9,319,495</td>
<td>$6,165,856</td>
<td>$757,993</td>
</tr>
<tr>
<td>CITIBANK NATIONAL ASSN</td>
<td>SD</td>
<td>1,312,764</td>
<td>51,894,344</td>
<td>507,786</td>
<td>822,540</td>
<td>6,807,970</td>
<td>31,789,558</td>
<td>8,896,057</td>
<td>3,070,433</td>
<td>1,076,482</td>
</tr>
<tr>
<td>BANK OF AMERICA NA</td>
<td>NC</td>
<td>1,448,262</td>
<td>46,361,694</td>
<td>1,927,382</td>
<td>227,302</td>
<td>9,397,464</td>
<td>28,199,752</td>
<td>3,047,474</td>
<td>3,562,320</td>
<td>362,281</td>
</tr>
<tr>
<td>GOLDMAN SACHS BANK USA</td>
<td>NY</td>
<td>101,927</td>
<td>42,821,356</td>
<td>781,471</td>
<td>921,796</td>
<td>5,519,086</td>
<td>29,590,057</td>
<td>7,480,149</td>
<td>528,797</td>
<td>4,549</td>
</tr>
<tr>
<td>HSBC BANK USA NATIONAL ASSN</td>
<td>VA</td>
<td>206,809</td>
<td>4,466,896</td>
<td>91,991</td>
<td>53,997</td>
<td>884,122</td>
<td>2,659,879</td>
<td>177,866</td>
<td>599,022</td>
<td>83,373</td>
</tr>
<tr>
<td>WELLS FARGO BANK NA</td>
<td>SD</td>
<td>1,181,817</td>
<td>3,778,395</td>
<td>211,442</td>
<td>50,229</td>
<td>931,115</td>
<td>2,076,755</td>
<td>434,044</td>
<td>74,810</td>
<td>17,124</td>
</tr>
<tr>
<td>MORGAN STANLEY BANK NA</td>
<td>UT</td>
<td>67,651</td>
<td>2,566,841</td>
<td>7,122</td>
<td>0</td>
<td>440,668</td>
<td>1,327,237</td>
<td>768,647</td>
<td>23,167</td>
<td>99,401</td>
</tr>
</tbody>
</table>

Data: US Office of the Comptroller of the Currency, 1998/Q4 - 2012/Q4

Chair of Systems Design
www.sg.ethz.ch
Frank Schweitzer

Multi-layer network perspective on systemic risk
MFM Winter 2016 Meeting
Network approach
Stern School, NYU 28-29 Jan 2016
Interdependent Networks

- **inter-layer plus intra-layer** interactions
- **restricted access**: use *layer 0* to **control** *layer 1*
 - use *peripheral* nodes to control *central* nodes
 - **cost-efficient** strategy to influence the whole network

Economics: A Multi-Layer Network

- **multiple interactions**
 - ownership/control
 - risk diversification
 - knowledge transfer

- **feedback within layers**
 - investments/participation
 - credit relations, OTC derivatives
 - R&D collaborations

- **feedback between layers**
 - ownership \rightarrow failure risk
 - ownership \rightarrow knowledge transfer
 - failure risk \rightarrow knowledge transfer
Multi-layer structure of financial networks

Banking network of Mexico 30 September 2013

- (a) exposures from derivatives
- (b) securities, cross-holdings
- (c) foreign exchange exposures
- (d) deposits and loans
- (e) combined banking network

Banks colored according to their systemic impact R_i
Node-size represents banks total assets
Link-width is the exposure size between banks

http://multinets.io/

MULTINET.JS
A visualization framework for large, dynamic and multi-layered graphs developed by the Chair of Systems Design at ETH Zürich

FEATURES
- Navigation
- Sharing
- Styling
- Camera Options
- Snapshot

EXAMPLES
Systemic risk in a network of firms

- **dynamic state:** healthy: \(s_i(t) = 0 \), or failed: \(s_i(t) = 1 \)

\[
s_i(t + 1) = \Theta[\phi_i(t, s, A) - \theta_i]
\]

- **threshold:** \(\theta_i = \frac{C^i}{L^i} \)
 - ratio between *capital buffer* \(C^i \) and *liabilities* \(L^i \)

- **fragility:** depends on the fraction of failed neighbors
 - diversification mitigates the impact of a single neighbor

\[
\phi^i(k^i) = \frac{1}{k^i} \sum_{j \in \text{nb}(i)} s^j = \frac{n^i}{k^i} = \frac{\sum_{j \in \text{nb}(i)} s^j w^i}{L^i}
\]

- loss from failing neighbors divided by total liability
- firm's liability: \(L^i = \sum_{j \in \text{nb}(i)} w^i \)
- financial obligation to each neighbor: \(w^i = \frac{L^i}{k_i} \)

When is it beneficial to have two layers?

- **Strategic decision of firms**
 1. to operate in two *different* layers
 - core business: layer (0)
 - subsidiary business: layer (1)
 - different risk profiles $F_1(\theta^{(1)})$, $F_1(\theta^{(1)})$
 2. to *merge* businesses

- **compare** systemic risk
 - risk in *separate* layers vs *aggregated*
 - measure final *cascade size* in layer (0)

$$\varrho^{(0)} = \frac{1}{N} \sum_i s_i^{(0)}$$
Asymmetric feedback between layers

1. failure propagation $(0) \rightarrow (1)$
 - leads to a failure in (1)
 - $s_i^{(0)} = 1 \rightarrow s_i^{(1)} = 1$
 - failed nodes cannot recover
Asymmetric feedback between layers

1. **failure propagation** (0) → (1)
 - leads to a failure in (1)
 - $s_i^{(0)} = 1 \rightarrow s_i^{(1)} = 1$
 - failed nodes cannot recover

2. **failure propagation** (1) → (0)
 - leads to a threshold reduction in (0)
 - $\theta_i^{(0)} \rightarrow (1 - r_{10}) \theta_i^{(0)}$
 - may lead to subsequent failure in (0)

vary coupling strength r_{10}
How cascades propagate

Subsidiary Business

Core Business

Multi-layer network perspective on systemic risk

Frank Schweitzer

MFM Winter 2016 Meeting

Stern School, NYU 28-29 Jan 2016
How cascades propagate

Subsidiary Business

Core Business
How cascades propagate
How cascades propagate
How cascades propagate
How cascades propagate

Subsidiary Business

Core Business
Mathematical Model

Assumptions:

- each layer: random graph (ER network)
- network size $N \to \infty$, $C \to 0$
- node i: independently at random:
 - degrees $k_i^{(0)}$, $k_i^{(1)}$ from $p_0(k_i^{(0)})$, $p_1(k_i^{(1)})$
 - thresholds $\theta_i^{(0)}$, $\theta_i^{(1)}$ from $F_0(\theta_i^{(0)})$, $F_1(\theta_i^{(1)})$

Goal: calculate final cascade size ϱ_0^*

Analytic Approach: Local tree approximation

- **Average** fraction of failed nodes: \(\varrho_0^* = \sum_{k_0} p_0(k_0) \mathbb{P}(s_0 = 1 | k_0) \)

- Prob. to fail because of neighb. failures in layer \((l)\):
 \[
 \varrho_{s,l}^* = \sum_{k_l} p_l(k_l) \sum_{n_l=0}^{k_l} B(n_l, k_l, \pi^*_l) F_l \left(\frac{n_l}{k_l} \right).
 \]

- Failure prob. in \((l)\) given node’s degree:
 \[
 \mathbb{P}(s_l = 1 | k_l) =
 \sum_{n_l=0}^{k_l} B(n_l, k_l, \pi^*_l) \mathbb{P} \left(s_l = 1 | k_l, n_l, \varrho_{s,1-l}^* \right).
 \]

- Ability to withstand shocks:
 \[
 \mathbb{P} \left(s_l = 1 | k_l, n_l, \varrho_{s,1-l}^* \right) =
 \left(1 - \varrho_{s,1-l}^* \right) F_l \left(\frac{n_l}{k_l} \right) + \varrho_{s,1-l}^* F_l \left(\frac{n_l}{k_l} \right).
 \]

- Fail. Prob. Neighb.:
 \[
 \pi_l^* = L(\pi_l^*):= \sum_{k_l} \frac{p_l(k_l) k_l}{z_l} \sum_{n_l=0}^{k_l-1} B(n_l, k_l - 1, \pi_l^*) \mathbb{P} \left(s_l = 1 | k_l, n_l, \varrho_{s,1-l}^* \right)
 \]
 \[
 \text{where } z_l = \sum_{k_l} p_l(k_l) \cdot k_l.
 \]
Analytic Approach: Local tree approximation

- **Average** fraction of failed nodes:
 \[
 \varrho_0^* = \sum_{k_0} p_0(k_0) \mathbb{P}(s_0 = 1 | k_0)
 \]

- Prob. to fail because of neighb. failures in layer (l):
 \[
 \varrho_{s,l}^* = \sum_{k_l} p_l(k_l) \sum_{n_l=0}^{k_l} B(n_l, k_l, \pi_l^*) F_l \left(\frac{n_l}{k_l} \right).
 \]

- Failure prob. in (l) given node’s degree:
 \[
 \mathbb{P}(s_l = 1 | k_l) = \\
 \sum_{n_l=0}^{k_l} B(n_l, k_l, \pi_l^*) \mathbb{P} \left(s_l = 1 | k_l, n_l, \varrho_{s,1-l}^* \right).
 \]

- Ability to withstand shocks:
 \[
 \mathbb{P} \left(s_l = 1 | k_l, n_l, \varrho_{s,1-l}^* \right) = \\
 \left(\left(1 - \varrho_{s,1-l}^* \right) F_l \left(\frac{n_l}{k_l} \right) + \varrho_{s,1-l}^* F_l \left(\frac{n_l}{k_l} / \left(1 - r_{1-l,l} \right) \right) \right).
 \]

- Fail. Prob. Neighb.:
 \[
 \pi_l^* = L(\pi_l^*) := \sum_{k_l} \frac{p_l(k_l) k_l}{z_l} \sum_{n_l=0}^{k_l-1} B(n_l, k_l - 1, \pi_l^*) \mathbb{P} \left(s_l = 1 | k_l, n_l, \varrho_{s,1-l}^* \right)
 \]
 where \(z_l = \sum_{k_l} p_l(k_l) \cdot k_l \).
Result: Sharp regime shift

- **Computer simulations/ analytical results**
 - *initial condition*: core business is safe
 - *vary*: threshold distribution of subsidiary layer: μ_1, σ_1
 - **Emergence of large cascades** \Rightarrow core business collapses
 - below a critical μ_1: coupling leads to complete failure
nodes in aggregated layer

- **degree**: \(k_{\text{agg}} = k^{(0)} + k^{(1)} \)
 - better diversified, but higher connectivity
 \(\Rightarrow \) amplification of cascades

- **threshold**:
 \[\theta_{\text{agg}} = \frac{\theta^{(0)} k^{(0)} + \theta^{(1)} k^{(1)}}{k^{(0)} + k^{(1)}} \]

- \(\theta = C/L \Rightarrow \) shared capital buffers
Is merging of businesses safer?

Layer (0): \(\rho_0^* \)

Layer (1): \(\rho_1^* \)

Aggregated: \(\rho_{\text{agg}}^* \)

\[r_{10} = 0.1 \]

\[r_{10} = 0.2 \]

No for small coupling \(r_{10} \).
Is merging of businesses safer?

$r_{10} = 0.4$

$r_{10} = 0.8$

Yes for stronger coupling r_{10}.
Mergers not always decrease risk

Layer (0): ϱ^*_0

Layer (1): ϱ^*_1

Aggregated: $\varrho^{*\text{agg}}$

Influence of coupling r_{10} and μ_1 (small σ_1)

- $r_{10} \leq 0.2$: Disaggregation blocks cascade amplification!
- Increased systemic risk above critical coupling
Conclusions

1. **Systemic risk emerges**
 - bottom-up approach, mathematical framework \(\Rightarrow \rho(t) \rightarrow \rho^*\)

2. **Multi-layer network approach**
 - networks are (re)constructed \(\Rightarrow\) several pitfalls
 - interdependent networks \(\Rightarrow\) more pitfalls (intra/inter-layer links)

3. **Systemic risk in multi-layer networks**
 - split into core/subsidiary business \(\Rightarrow\) amplification of failure
 - critical coupling strength \(r_{10}\), critical risk profile \(\mu_1\)
 - sharp transition between no/full collapse
Conclusions

1. **Systemic risk emerges**
 - bottom-up approach, mathematical framework \(\varphi(t) \rightarrow \varphi^* \)

2. **Multi-layer network approach**
 - networks are (re)constructed \(\Rightarrow \) several pitfalls
 - interdependent networks \(\Rightarrow \) more pitfalls (intra/inter-layer links)

3. **Systemic risk in multi-layer networks**
 - split into core/subsidiary business \(\Rightarrow \) amplification of failure
 - critical coupling strength \(r_{10} \), critical risk profile \(\mu_1 \)
 - sharp transition between no/full collapse

Advice for risk managers

1. Understand the role of *couplings* between businesses!
2. Did you draw risk scenarios for split businesses from an *aggregated model*? Then you have **underestimated** your real risk!