Escaping the Great Recession1

Francesco Bianchi
Cornell and Duke
CEPR and NBER

Leonardo Melosi
FRB Chicago

Next Steps for the Fiscal Theory of the Price Level
Becker Friedman Institute

1The views in this paper are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Federal Reserve Bank of Chicago or any other person associated with the Federal Reserve System.
The Great Recession and Policy Interventions

The recent recession has induced:

1. Significant changes in the conduct of monetary policy, with interest rates stuck at the zero lower bound
 - Standard new-Keynesian model would predict deflation (Bob Hall’s puzzle)

2. A debate on the best way to mitigate the consequences of a recession when at the zero-lower-bound:
 - Robust fiscal intervention combined with a reduction in the focus on inflation
 - Reluctance to explicitly abandon macroeconomic policies that have been successful in the past
Model Setup

We model an economy in which:

1. **recurrent** large negative demand shocks can force the economy to the zero lower bound

2. two policy combinations characterize policy makers’ behavior:
 - **Monetary led policy mix**: The fiscal authority strongly reacts to debt and the monetary policy rule satisfies the Taylor principle
 - **Fiscally led policy mix**: The fiscal authority disregards the level of debt and the Taylor principle does not hold

Agents are aware of the possibility of...

1. ...zero lower bound episodes,
2. ...changes in policy makers’ behavior,
3. ...and the link between the two
Main Results

1. The model accounts for the absence of deflation during the Great Recession as a result of policy uncertainty about how the rising stock of public debt will be stabilized.

2. At the zero lower bound a policy trade-off arises...
 - Announcing that fiscal discipline will be abandoned greatly mitigates the recession, but...
 - ...it also jeopardizes long-run macroeconomic stability.

3. Policymakers could escape the Great Recession by committing to inflating away only the amount of debt that results from the recession itself.
The representative household...

1. ...maximizes expected utility
2. ...is subject to a discrete preference shock \(\bar{d}_{zt} \) (high or low). The shock follows a two-state Markov-switching process with transition matrix \(H^d \)

The representative firm faces...

1. ...a downward sloping demand curve
2. ...price stickiness
Government: Monetary/fiscal policy mix

Monetary rule (linearized):

$$\tilde{R}_t = \left[1 - Z_{\tilde{\xi}_t} \right] \left[(1 - \rho_R) \left(\psi_{\pi,\tilde{\xi}_t} \tilde{\pi}_t + \psi_{y,\tilde{\xi}_t} [\tilde{y}_t - \tilde{y}^*_t] + \rho_{R,\tilde{\xi}_t} \tilde{R}_{t-1} + \sigma_R \epsilon_{R,t} \right) + \right]$$

$$+ Z_{\tilde{\xi}_t} [\text{Zero Lower Bound}]$$

Fiscal rule:

$$\tilde{\tau}_t = \rho_{\tau,\tilde{\xi}_t} \tilde{\tau}_{t-1} + \left(1 - \rho_{\tau,\tilde{\xi}_t} \right) \left[\delta_{b,\tilde{\xi}_t} \tilde{b}_{t-1}^m + \ldots \right] + \sigma_{\tau} \epsilon_{\tau,t}, \epsilon_{\tau,t} \sim N(0,1)$$

Government budget constraint + (simplified) fiscal rule:

$$\tilde{b}_t^m = \beta^{-1} \tilde{b}_{t-1}^m + b^m \beta^{-1} \left(\tilde{R}_{t-1,t}^m - \tilde{\pi}_t - \text{growth} \right)$$

$$- \tilde{\tau}_t + \text{spending}$$

$$\rightarrow \tilde{b}_t^m = (\beta^{-1} - \delta_{b,\tilde{\xi}_t}) \tilde{b}_{t-1}^m + \ldots$$
In and out of the zero lower bound

1. Out of the zero lower bound, two alternative policy regimes:
 - Monetary led policy mix \((AM/ PF, Z_{\xi_t} = 0) \):
 \[
 \psi_{\pi} \left(\xi^p_t = M; \xi^d_t = h \right) = \psi_{\pi,M} > 1 \\
 \delta_b \left(\xi^p_t = M; \xi^d_t = h \right) = \delta_{b,M} > \beta^{-1} - 1
 \]
 - Fiscally led policy mix \((PM/ AF, Z_{\xi_t} = 0) \):
 \[
 \psi_{\pi} \left(\xi^p_t = F; \xi^d_t = h \right) = \psi_{\pi,F} < 1 \\
 \delta_b \left(\xi^p_t = F; \xi^d_t = h \right) = \delta_{b,F} < \beta^{-1} - 1
 \]

2. Negative preference shock \(\rightarrow \) Zero lower bound policy mix:
 \[
 Z_{\xi^d_t} = 1 \rightarrow R_t \rightarrow \psi_z R^{-1} \\
 \delta_b \left(\xi^p_t = Z; \xi^d_t = l \right) = \delta_{b,Z} = 0
 \]
Evolution of Policy Regimes In and Out the ZLB

- Out of the zero lower bound, policymakers’ behavior evolves according to

\[
H^p = \begin{bmatrix}
p_{MM} & 1 - p_{FF} \\
1 - p_{MM} & p_{FF}
\end{bmatrix}
\]

- Combine \(H^d \) with \(H^p \) to obtain evolution of policy regimes in and out the ZLB:

\[
H = \begin{bmatrix}
p_{hh}H^p & (1 - p_{ll}) \begin{bmatrix} p_{MZ} \\ 1 - p_{MZ} \end{bmatrix} \\
(1 - p_{hh}) [1, 1] & p_{ll}
\end{bmatrix}
\]
Estimation

- We solve the model with the method proposed by Farmer, Waggoner, and Zha (2009):

\[S_t = C(\tilde{\eta}_t, \theta, H) + T(\tilde{\eta}_t, \theta, H) S_{t-1} + R(\tilde{\eta}_t, \theta, H) \varepsilon_t \]

- Agents take into account the possibility of regime changes \(\Rightarrow \) Their beliefs matter for the solution of the model.

- We estimate the model with Bayesian methods over the period 1954:Q4-2014:Q1.

- Regime sequence based on MS-VAR evidence (details) and consistent with Bianchi and Ilut (2016):
 1. 1960s - 1970s \(\rightarrow \) Fiscally led policy mix
 2. 1980s - 2000s \(\rightarrow \) Monetary led policy mix
 3. Post-2008:Q4 \(\rightarrow \) Zero lower bound policy mix
Prior and Posterior Moments

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>5%</th>
<th>95%</th>
<th>Type</th>
<th>Mean</th>
<th>Std</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\psi_{\pi,M}$</td>
<td>1.6019</td>
<td>1.1758</td>
<td>2.0207</td>
<td>N</td>
<td>2.5</td>
<td>0.3</td>
</tr>
<tr>
<td>$\psi_{y,M}$</td>
<td>0.5065</td>
<td>0.2980</td>
<td>0.7688</td>
<td>G</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>$\delta_{b,M}$</td>
<td>0.0712</td>
<td>0.0457</td>
<td>0.1041</td>
<td>G</td>
<td>0.07</td>
<td>0.02</td>
</tr>
<tr>
<td>$\psi_{\pi,F}$</td>
<td>0.6356</td>
<td>0.5007</td>
<td>0.7546</td>
<td>G</td>
<td>0.8</td>
<td>0.3</td>
</tr>
<tr>
<td>$\psi_{y,F}$</td>
<td>0.2709</td>
<td>0.2005</td>
<td>0.3458</td>
<td>G</td>
<td>0.15</td>
<td>0.1</td>
</tr>
<tr>
<td>$\delta_{b,F}$</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>F</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>\bar{d}_I</td>
<td>-0.3662</td>
<td>-0.4827</td>
<td>-0.2789</td>
<td>N</td>
<td>-0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>p_{hh}</td>
<td>0.9995</td>
<td>0.9984</td>
<td>0.9999</td>
<td>D</td>
<td>0.96</td>
<td>0.03</td>
</tr>
<tr>
<td>p_{ll}</td>
<td>0.9306</td>
<td>0.8936</td>
<td>0.9599</td>
<td>D</td>
<td>0.83</td>
<td>0.10</td>
</tr>
<tr>
<td>p_{MM}</td>
<td>0.9923</td>
<td>0.9872</td>
<td>0.9965</td>
<td>D</td>
<td>0.96</td>
<td>0.03</td>
</tr>
<tr>
<td>p_{FF}</td>
<td>0.9923</td>
<td>0.9888</td>
<td>0.9951</td>
<td>D</td>
<td>0.96</td>
<td>0.03</td>
</tr>
<tr>
<td>p_{MZ}</td>
<td>0.9225</td>
<td>0.8108</td>
<td>0.9861</td>
<td>D</td>
<td>0.50</td>
<td>0.22</td>
</tr>
</tbody>
</table>
Dynamics at the ZLB

- **GDP growth**
 - 2007 to 2014
 - Y-axis: -2 to 0
 - X-axis: 2007 to 2014

- **Inflation**
 - 2007 to 2014
 - Y-axis: -0.5 to 1
 - X-axis: 2007 to 2014

- **FFR**
 - 2007 to 2014
 - Y-axis: 0 to 1.2
 - X-axis: 2007 to 2014
 - Actual data, Median, 90% Error Bands

- **Debt-to-GDP**
 - 2007 to 2014
 - Y-axis: 150 to 300
 - X-axis: 2007 to 2014
No Policy Uncertainty

Let us consider a counterfactual that removes policy uncertainty: Only Monetary led regime out of the ZLB
Inflation Expectations

Corroborating evidence: Inflation expectations

One-year horizon

Five-year horizon
No fiscal block: Explanatory power of discrete shock

Suppose we estimate a nested model without the fiscal block:
→ It cannot account for the joint dynamics of growth and inflation with a single shock
No fiscal block: Ability to match inflation expectations

Suppose we estimate a nested model without the fiscal block:
→ It cannot account for the behavior of inflation expectations
Inflation and Output gap

Inflation

Output gap

Benchmark
No Fiscal Uncertainty

-10 -5 0 5 10

Policy Trade-Off

Why do not policy makers simply announce a switch to the fiscally led regime?

- Announcing the Fiscally led regime...
 1. ...mitigates the recession...
 2. ...at the cost of an increase in macroeconomic uncertainty

- The two results are the two sides of the same coin

- Announcement works only if it modifies long term expectations about future policy makers’ behavior
Escaping the Great Recession

Suppose policy makers commit to inflating away only the amount of debt resulting from the recession itself ⇒ No large recession
Escaping the Great Recession

Policy makers follow the Monetary led policy mix in response to all other shocks ⇒ No increase in uncertainty
Concluding Remarks

1. Recurrent ZLB events in a standard DSGE model

2. Absence of deflation explained by policy uncertainty in response to a single shock

3. The model highlights a policy trade off that can explain why policy makers...
 - are reluctant to abandon fiscal discipline
 - might be tempted to do so to escape the Great Recession

4. Inflating away only the amount of debt accumulated because of the recession would resolve the trade off
Motivating evidence

- We use a MS-VAR to establish a series of stylized facts:

\[
Z_t = c_{\xi_t} + A_{\xi_t,1} Z_{t-1} + A_{\xi_t,2} Z_{t-2} + \Sigma_{\xi_t}^{1/2} \omega_t \\
\Phi_{\xi_t} = \begin{bmatrix} c_{\xi_t}, A_{\xi_t,1}, A_{\xi_t,2} \end{bmatrix}, \omega_t \sim N(0, I)
\]

- The model allows for three regimes for the VAR coefficients and three regimes for the covariance matrix

- We include four observables:
 1. Primary deficit-to-GDP ratio
 2. GDP growth
 3. Inflation
 4. Federal Funds Rate

Conditional Steady-States

<table>
<thead>
<tr>
<th></th>
<th>Regime 1</th>
<th></th>
<th>Regime 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median</td>
<td>16%</td>
<td>84%</td>
<td>Median</td>
</tr>
<tr>
<td>Deficit/Debt</td>
<td>2.99</td>
<td>1.44</td>
<td>6.21</td>
<td>-3.63</td>
</tr>
<tr>
<td>GDP Growth</td>
<td>3.45</td>
<td>1.91</td>
<td>4.25</td>
<td>3.00</td>
</tr>
<tr>
<td>Inflation</td>
<td>5.11</td>
<td>3.45</td>
<td>8.61</td>
<td>2.48</td>
</tr>
<tr>
<td>Interest Rate</td>
<td>6.15</td>
<td>4.87</td>
<td>8.89</td>
<td>4.68</td>
</tr>
<tr>
<td>Real Int. Rate</td>
<td>1.07</td>
<td>0.23</td>
<td>1.48</td>
<td>2.21</td>
</tr>
</tbody>
</table>

Stylized fact 1:

- **1960 - 1970s:** High inflation, fiscal deficits, low real interest rates → Consistent with a fiscally led regime
- **1980 - 2000s:** Low inflation, fiscal surpluses, higher real interest rates → Consistent with a monetary led regime
Properties of the zero lower bound regime

Stylized fact 2: One single event is able to account for the zero lower bound dynamics
Stylized fact 3: Fiscal imbalances are important at the zero lower bound.
Desirable properties

Desirable properties of a model aiming to explain the zero lower bound dynamics:

1. A single large initial shock should account for the dynamics of macro aggregates
2. The model should distinguish three periods in US economic history
3. The model should capture the inflationary consequences of fiscal imbalances during the zero lower bound
Comparison: Zero lower bound dynamics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Median</th>
<th>5%</th>
<th>95%</th>
<th>16%</th>
<th>84%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP growth</td>
<td>0.2997</td>
<td>0.2324</td>
<td>0.4172</td>
<td>0.2552</td>
<td>0.3595</td>
</tr>
<tr>
<td>Inflation</td>
<td>0.0638</td>
<td>0.0312</td>
<td>0.1897</td>
<td>0.0351</td>
<td>0.1338</td>
</tr>
<tr>
<td>Model without Fiscal Block</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP growth</td>
<td>0.4134</td>
<td>0.3607</td>
<td>0.4723</td>
<td>0.3807</td>
<td>0.4485</td>
</tr>
<tr>
<td>Inflation</td>
<td>0.1042</td>
<td>0.0331</td>
<td>0.3075</td>
<td>0.0461</td>
<td>0.2066</td>
</tr>
</tbody>
</table>
Comparison: Ability to match inflation expectations

Benchmark Model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Median</th>
<th>5%</th>
<th>95%</th>
<th>16%</th>
<th>84%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole sample: 1-year</td>
<td>0.0569</td>
<td>0.0374</td>
<td>0.0857</td>
<td>0.0440</td>
<td>0.0733</td>
</tr>
<tr>
<td>Whole sample: 5-year</td>
<td>0.0451</td>
<td>0.0345</td>
<td>0.0641</td>
<td>0.0378</td>
<td>0.0557</td>
</tr>
<tr>
<td>Pre-ZLB: 1-year</td>
<td>0.0424</td>
<td>0.0317</td>
<td>0.0615</td>
<td>0.0349</td>
<td>0.0529</td>
</tr>
<tr>
<td>Pre-ZLB: 5-year</td>
<td>0.0493</td>
<td>0.0383</td>
<td>0.0734</td>
<td>0.0415</td>
<td>0.0625</td>
</tr>
<tr>
<td>Post-ZLB: 1-year</td>
<td>0.1001</td>
<td>0.0368</td>
<td>0.2067</td>
<td>0.0551</td>
<td>0.1595</td>
</tr>
<tr>
<td>Post-ZLB: 5-year</td>
<td>0.0181</td>
<td>0.0037</td>
<td>0.0958</td>
<td>0.0066</td>
<td>0.0532</td>
</tr>
</tbody>
</table>

Model without Fiscal Block

<table>
<thead>
<tr>
<th>Variable</th>
<th>Median</th>
<th>5%</th>
<th>95%</th>
<th>16%</th>
<th>84%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole sample: 1-year</td>
<td>0.1675</td>
<td>0.1399</td>
<td>0.1955</td>
<td>0.1510</td>
<td>0.1840</td>
</tr>
<tr>
<td>Whole sample: 5-year</td>
<td>0.1563</td>
<td>0.1106</td>
<td>0.2141</td>
<td>0.1307</td>
<td>0.1894</td>
</tr>
<tr>
<td>Pre-ZLB: 1-year</td>
<td>0.1496</td>
<td>0.1241</td>
<td>0.1880</td>
<td>0.1349</td>
<td>0.1696</td>
</tr>
<tr>
<td>Pre-ZLB: 5-year</td>
<td>0.1836</td>
<td>0.1281</td>
<td>0.2557</td>
<td>0.1510</td>
<td>0.2229</td>
</tr>
<tr>
<td>Post-ZLB: 1-year</td>
<td>0.2309</td>
<td>0.1005</td>
<td>0.3008</td>
<td>0.1577</td>
<td>0.2778</td>
</tr>
<tr>
<td>Post-ZLB: 5-year</td>
<td>0.0656</td>
<td>0.0139</td>
<td>0.1369</td>
<td>0.0298</td>
<td>0.1058</td>
</tr>
</tbody>
</table>
Dynamics at the ZLB

• Impulse response to a discrete negative preference shock \(\bar{d}_1 \)

• We consider the economy as it was in 2008Q3

• A negative discrete preference shock occurs in 2008:Q4

• Objectives:

1. A stylized NK model can replicate the key post-2008Q3 macroeconomic facts as a result of only one shock

2. The impulse response is *not* invariant with respect to the state of the economy; in particular the fiscal situation

 • b/c the negative preference shock implies a change in expectations about future policymakers’ behavior
Primary deficit and debt

- The government budget constraint is given by:

\[b_t^m = \left(b_{t-1}^m R_{t-1,t}^m \right) / (\Pi_t Y_t / Y_{t-1}) + pd_t \]

where \(b_t^m = (P_t^m B_t^m) / (P_t Y_t) \) and all variables are expressed as a faction of GDP.

- In steady state:

\[
\begin{align*}
 b^m &= \left(b^m R^m \right) / (\Pi M) + pd \\
 b^m &= \frac{pd}{1 - \left(1 + r \right) / \left(1 + \gamma \right)} \\
 b^m &= \frac{pd}{1 - 1/\beta} > 0 \text{ if } pd < 0
\end{align*}
\]

- Also:

\[
\frac{pd}{b^m} = 1 - 1/\beta < 0
\]
Shock to government spending

Inflation

- Monetary led
- Fiscally led
- ZLB

Output gap

- Monetary led
- Fiscally led
- ZLB

FFR

- Monetary led
- Fiscally led
- ZLB
Monetary/Fiscal Policy Mix

Leeper (1991) shows that two determinacy regions exist:

<table>
<thead>
<tr>
<th></th>
<th>ψ_{π,ζ_t}</th>
<th>δ_{b,ζ_t}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Monetary, Passive Fiscal</td>
<td>> 1</td>
<td>$> \beta^{-1} - 1$</td>
</tr>
<tr>
<td>Passive Monetary, Active Fiscal</td>
<td>< 1</td>
<td>$< \beta^{-1} - 1$</td>
</tr>
</tbody>
</table>

- **AM/PF** \rightarrow Taylor principle is satisfied, fiscal policy accommodates behavior of monetary authority
 \rightarrow **Macroeconomy is insulated** (Ricardian regime)

- **PM/AF** \rightarrow Taylor principle is **not** satisfied, inflation is free to move to keep debt on a stable path
 \rightarrow **Macroeconomy is not insulated** (non-Ricardian regime)
Why does this approach work?

- Policy makers are influencing agents’ beliefs about their long run behavior in response to a specific shock
 - **Automatic stabilizer:** This behavior determines an increase in short run expected inflation exactly when necessary

- Policy makers are committed to raise taxes to repay the preexisting amount of debt and all future fiscal imbalances
 - **Macroeconomic stability is retained after the recession**