Lifetime-Laffer Curves and the Eurozone Crisis

Zachary R. Stangebye

University of Notre Dame

MFM Group Winter Meetings:
January 29th, 2016
Motivation

- Eurozone crisis: Key features
 1. Sentiments seemed to play role (OMT)
 - Not liquidity Bocola and Dovis (2015)
 2. Borrowing into high spreads \rightarrow Debt-to-GDP exploded
Motivation
Motivation

- Eurozone crisis: Key features
 1. Sentiments seemed to play role (OMT)
 - Not liquidity Bocola and Dovis (2015)
 2. Borrowing into high spreads \rightarrow Debt-to-GDP exploded

- This paper
 1. Parsimonious model to generate such crises
 - Multiplicity of financing trajectories
 - Driven by lack of commitment to future behavior
Motivation

- Eurozone crisis: Key features
 1. Sentiments seemed to play role (OMT)
 - Not liquidity Bocola and Dovis (2015)
 2. Borrowing into high spreads \rightarrow Debt-to-GDP exploded

- This paper
 1. Parsimonious model to generate such crises
 - Multiplicity of financing trajectories
 - Driven by lack of commitment to future behavior
 2. Calibrated example/Quantitative relevance
 - Could be responsible for more than 380 basis points (84.6%) of average spread for Ireland
Motivation

- Eurozone crisis: Key features
 1. Sentiments seemed to play role (OMT)
 - Not liquidity Bocola and Dovis (2015)
 2. Borrowing into high spreads → Debt-to-GDP exploded

- This paper
 1. Parsimonious model to generate such crises
 - Multiplicity of financing trajectories
 - Driven by lack of commitment to future behavior
 2. Calibrated example/Quantitative relevance
 - Could be responsible for more than 380 basis points (84.6%) of average spread for Ireland
 3. Policy prescriptions
 4. Extensions
Intuition

• Driven by lack of ability to commit to future debt issuance
Intuition

- Driven by lack of ability to commit to future debt issuance
 1. Investors anticipate high borrowing in future
Intuition

• Driven by lack of ability to commit to future debt issuance
 1. Investors anticipate high borrowing in future
 2. Demand a dilution premium (long-term bonds)
Intuition

- Driven by lack of ability to commit to future debt issuance
 1. Investors anticipate high borrowing in future
 2. Demand a dilution premium (long-term bonds)
 3. Dilution premium forces sovereign to borrow more
Intuition

• Driven by lack of ability to commit to future debt issuance
 1. Investors anticipate high borrowing in future
 2. Demand a dilution premium (long-term bonds)
 3. Dilution premium forces sovereign to borrow more
 4. High current borrowing causes need for high roll-over tomorrow
Intuition

- Driven by lack of ability to commit to future debt issuance
 1. Investors anticipate high borrowing in future
 2. Demand a dilution premium (long-term bonds)
 3. Dilution premium forces sovereign to borrow more
 4. High current borrowing causes need for high roll-over tomorrow
 5. Sovereign borrows more tomorrow (expectations fulfilled)
Intuition

- Driven by lack of ability to commit to future debt issuance
 1. Investors anticipate high borrowing in future
 2. Demand a dilution premium (long-term bonds)
 3. Dilution premium forces sovereign to borrow more
 4. High current borrowing causes need for high roll-over tomorrow
 5. Sovereign borrows more tomorrow (expectations fulfilled)

- This paper: Impose commitment in terminal periods, but not in initial
 - Work in progress: Commitment in all periods
Model Outline: Sovereign

- 3-period model: \(t = 0, 1, 2 \); only risk is default in period 2
Model Outline: Sovereign

- 3-period model: $t = 0, 1, 2$; only risk is default in period 2
- Auction debt in periods 0, 1
Model Outline: Sovereign

- 3-period model: \(t = 0, 1, 2 \); only risk is default in period 2
- Auction debt in periods 0, 1
- All bonds pay \(\hat{B} \) in period 2
 - LT-debt in period 0
 - ST-debt in period 1
Model Outline: Sovereign

- 3-period model: $t = 0, 1, 2$; only risk is default in period 2
- Auction debt in periods 0, 1
- All bonds pay \hat{B} in period 2
 - LT-debt in period 0
 - ST-debt in period 1
- Primary deficit sequence $< d_0, d_1 >$ and initial debt, b_0, given
 - Financing trajectory, $< b_1, b_2 >$, endogenous
Model Outline: Sovereign

- 3-period model: \(t = 0, 1, 2 \); only risk is default in period 2
- Auction debt in periods 0, 1
- All bonds pay \(\hat{B} \) in period 2
 - LT-debt in period 0
 - ST-debt in period 1
- Primary deficit sequence \(< d_0, d_1 > \) and initial debt, \(b_0 \), given
 - Financing trajectory, \(< b_1, b_2 > \), endogenous
- Debt price in period \(t \): \(q_t \)
Model Outline: Sovereign

- 3-period model: \(t = 0, 1, 2 \); only risk is default in period 2
- Auction debt in periods 0, 1
- All bonds pay \(\hat{B} \) in period 2
 - LT-debt in period 0
 - ST-debt in period 1
- Primary deficit sequence \(< d_0, d_1 > \) and initial debt, \(b_0 \), given
 - Financing trajectory, \(< b_1, b_2 > \), endogenous
- Debt price in period \(t \): \(q_t \)
- **Budget Condition**

\[
\begin{align*}
 d_0 &= q_0(b_1 - b_0) \\
 d_1 &= q_1(b_2 - b_1)
\end{align*}
\]
Model Outline: Lenders

- Default risk in period 2: $g : \mathcal{R} \rightarrow [0, 1]$
 - g is increasing, continuous, differentiable, and convex up to $\bar{b} < \infty$ s.t.
 $$g(\bar{b}) = 1$$
 - and equals one thereafter
Model Outline: Lenders

- Default risk in period 2: \(g : \mathcal{R} \rightarrow [0, 1] \)
 - \(g \) is increasing, continuous, differentiable, and convex up to \(\bar{b} < \infty \) s.t.
 \[
g(\bar{b}) = 1
 \]
 and equals one thereafter
- Lenders are risk-neutral, deep-pocketed, price against risk-free \(R \)
Model Outline: Lenders

- Default risk in period 2: \(g : \mathcal{R} \to [0, 1] \)
 - \(g \) is increasing, continuous, differentiable, and convex up to \(\bar{b} < \infty \) s.t.
 \[
 g(\bar{b}) = 1
 \]
 and equals one thereafter
- Lenders are risk-neutral, deep-pocketed, price against risk-free \(R \)
- Implies No-Arbitrage Condition

\[
q_0 = \frac{\hat{B}}{R^2}[1 - g(b_2)]
\]
\[
q_1 = \frac{\hat{B}}{R}[1 - g(b_2)]
\]
Model Outline: Commitment

- Period one auction revenue given by

\[
\frac{\hat{B}}{R} [1 - g(b_2)] \times [b_2 - b_1]
\]

Under our assumptions, concave in \(b_2 \)
Model Outline: Commitment

Revenue

\(b_1 \)

\(\bar{b} \)

New Debt: \(b_2 \)
Model Outline: Commitment

- Period one auction revenue given by

\[\frac{\hat{B}}{R} [1 - g(b_2)] \times [b_2 - b_1] \]

Under our assumptions, concave in \(b_2 \)

- Two solutions for any feasible (positive) revenue
Model Outline: Commitment

- Period one auction revenue given by

\[
\frac{\hat{B}}{R} [1 - g(b_2)] \times [b_2 - b_1]
\]

Under our assumptions, concave in \(b_2 \)

- Two solutions for any feasible (positive) revenue
- Assume always on LHS: **Commitment Condition**

\[
g'(b_2)(b_2 - b_1) \leq 1 - g(b_2)
\]
Model Outline: Commitment

- Period one auction revenue given by

\[\frac{\hat{B}}{R} [1 - g(b_2)] \times [b_2 - b_1] \]

Under our assumptions, concave in \(b_2 \)

- Two solutions for any feasible (positive) revenue
- Assume always on LHS: **Commitment Condition**

\[g'(b_2)(b_2 - b_1) \leq 1 - g(b_2) \]

Terminal period: **Contemporaneous commitment to debt issuance**
Characterizing the Solution: Lifetime BC

- Idea: Collapse flow BC into Lifetime BC
 - Derive **Lifetime-Laffer Curve** → Multiplicity
Characterizing the Solution: Lifetime BC

- Idea: Collapse flow BC into Lifetime BC
 - Derive **Lifetime-Laffer Curve** → Multiplicity
- Re-write BC1 as a function of b_2

\[
b_1 = b_2 - \frac{Rd_1}{[1 - g(b_2)]\hat{B}}\]
Characterizing the Solution: Lifetime BC

- Idea: Collapse flow BC into Lifetime BC
 - Derive **Lifetime-Laffer Curve** → Multiplicity
- Re-write BC1 as a function of b_2

$$b_1 = b_2 - \frac{Rd_1}{[1 - g(b_2)]\hat{B}}$$

- Substitute into BC0

$$D = \frac{[1 - g(b_2)]\hat{B}}{R^2}[b_2 - b_0]$$
Characterizing the Solution: Lifetime BC

- Idea: Collapse flow BC into Lifetime BC
 - Derive **Lifetime-Laffer Curve** → Multiplicity
- Re-write BC1 as a function of b_2

$$b_1 = b_2 - \frac{Rd_1}{[1 - g(b_2)]\hat{B}}$$

- Substitute into BC0

$$D = \frac{[1 - g(b_2)]\hat{B}}{R^2} [b_2 - b_0]$$

- Where $D = d_0 + \frac{d_1}{R}$
Multiplicity via the Lifetime-Laffer Curve

- Let

\[D^*(b_0) = \max_{b_2} \left[\frac{1 - g(b_2)}{R^2} \right] \hat{B} [b_2 - b_0] \]
Multiplicity via the Lifetime-Laffer Curve

- Let

\[D^*(b_0) = \max_{b_2} \frac{[1 - g(b_2)]}{R^2} [b_2 - b_0] \]

Proposition

Suppose that \(0 < D < D^*(b_0) \). Then two solutions exist if and only if the sovereign's primary deficit stream is sufficiently front-loaded.

Call \(b_2 \) for each of these solutions \(b_L \) and \(b_H \)
Graphical Example
The Logic of Front-Loading

Formal **Front-Loading Condition**

\[
\frac{d_1}{R} \leq \frac{\hat{B}[1 - g(b_H(D))]^2}{R^2 g'(b_H(D))}
\]
The Logic of Front-Loading

Formal **Front-Loading Condition**

\[
\frac{d_1}{R} \leq \frac{\hat{B}[1 - g(b_H(D))]^2}{R^2 g'(b_H(D))}
\]

- Why do we need front-loading of \(D \)?
The Logic of Front-Loading

Formal **Front-Loading Condition**

\[
\frac{d_1}{R} \leq \frac{\hat{B}[1 - g(b_H(D))]^2}{R^2 g'(b_H(D))}
\]

- Why do we need front-loading of \(D \)?
 - Contemporaneous commitment easier to generate when revenue needs are low in period one
The Logic of Front-Loading

Formal **Front-Loading Condition**

\[
\frac{d_1}{R} \leq \frac{\hat{B}[1 - g(b_H(D))]^2}{R^2 g'(b_H(D))}
\]

- Why do we need front-loading of \(D \)?
 - Contemporaneous commitment easier to generate when revenue needs are low in period one

\[
\frac{\partial RevPeak_1}{\partial b_1} > 0
\]
The Logic of Front-Loading

Formal **Front-Loading Condition**

\[
\frac{d_1}{R} \leq \frac{\hat{B}[1 - g(b_H(D))]^2}{R^2 g'(b_H(D))}
\]

- Why do we need front-loading of \(D \)?
 - Contemporaneous commitment easier to generate when revenue needs are low in period one
 \[
 \frac{\partial}{\partial b_1} \text{RevPeak}_1 > 0
 \]
 - Holds for \(b_H \rightarrow \) Holds for \(b_L \)
The Logic of Front-Loading
Policy 1: Austerity

- Subject of *much* debate in recent years. Can it work?
Policy 1: Austerity

- Subject of *much* debate in recent years. Can it work? Depends

Proposition

If $d_0 \leq 0$, *then at most one solution exists, and it is on the LHS of the Lifetime-Laffer Curve*
Policy 1: Austerity

- Subject of *much* debate in recent years. Can it work? Depends

Proposition

If $d_0 \leq 0$, *then at most one solution exists, and it is on the LHS of the Lifetime-Laffer Curve*

- Immediate austerity (enough to induce buyback) works
- Dilution makes buyback easier \rightarrow Kills self-fulfilling dynamics

Proposition

If $0 < D < D^*(b_0)$ *and* $d_1 \leq 0$, *then two solutions exist.*
Policy 1: Austerity

- Subject of *much* debate in recent years. Can it work? Depends

Proposition

If $d_0 \leq 0$, *then at most one solution exists, and it is on the LHS of the Lifetime-Laffer Curve*

- Immediate austerity (enough to induce buyback) works
- Dilution makes buyback easier \rightarrow Kills self-fulfilling dynamics

Proposition

If $0 < D < D^*(b_0)$ and $d_1 \leq 0$, *then two solutions exist.*

- Delayed austerity *guarantees* existence of two solutions
- Front-loads deficit stream
Policy 2: Liquidity Provision

- OMT program in summer 2012 seemed successful
Policy 2: Liquidity Provision

- OMT program in summer 2012 seemed successful
- Add central bank as deep-pocketed third party: Specifies \(< \hat{q}_0, \hat{q}_1 >\) at which it is willing to purchase requisite debt to fill primary deficits
Policy 2: Liquidity Provision

- OMT program in summer 2012 seemed successful
- Add central bank as deep-pocketed third party: Specifies $< \hat{q}_0, \hat{q}_1 >$ at which it is willing to purchase requisite debt to fill primary deficits
- Sovereign receives a choice
 - If multiple financing trajectories are available, he goes with the one with the lowest default probability
Policy 2: Liquidity Provision

- OMT program in summer 2012 seemed successful
- Add central bank as deep-pocketed third party: Specifies $< \hat{q}_0, \hat{q}_1 >$ at which it is willing to purchase requisite debt to fill primary deficits
- Sovereign receives a choice
 - If multiple financing trajectories are available, he goes with the one with the lowest default probability

Proposition

*The central bank can costlessly eliminate the high-debt solution by pledging to provide liquidity at $< q_{0,L}, q_{1,L} >$.

Extension 1: T-Periods

- Nothing special about 3 periods; could be T
Extension 1: T-Periods

- Nothing special about 3 periods; could be T
- Deficit stream: $\{d_0, d_1, \ldots, d_{T-1}\}$
Extension 1: T-Periods

- Nothing special about 3 periods; could be T
- Deficit stream: $\{d_0, d_1, \ldots, d_{T-1}\}$
- Still only risk: Default in period T
Extension 1: T-Periods

- Nothing special about 3 periods; could be T.
- Deficit stream: $\{d_0, d_1, \ldots, d_{T-1}\}$
- Still only risk: Default in period T.
- Can still construct Lifetime-Laffer Curve with all same properties.

Proposition

Suppose that $0 < D < D^*(b_0)$. Then two solutions to the T-period model exist if and only if the sovereign’s primary deficit stream is sufficiently front-loaded.
Extension 1: T-Periods

- Nothing special about 3 periods; could be T
- Deficit stream: $\{d_0, d_1, \ldots, d_{T-1}\}$
- Still only risk: Default in period T
- Can still construct Lifetime-Laffer Curve with all same properties

Proposition

Suppose that $0 < D < D^(b_0)$. Then two solutions to the T-period model exist if and only if the sovereign’s primary deficit stream is sufficiently front-loaded.*

- Calibrate T-period model to Irish data: 2008-2013
 - Explains 380 bp of 450 bp spread
 - Very little change in counterfactual B/Y
Extension 2: Deficit Response

- In T-period model, suppose that $d_t(b_T)$
 - Sovereign responds to expected debt build-up (or spreads, default prob, etc.)
 - Assume $d_t(\cdot)$ continuous, twice differentiable

Proposition

Under a feasibility condition, a positive economy $<< b_0, \{d_t(\cdot)\}^{T-1}_{t=0} >>$ *will have at least two distinct financing trajectories. Further, if each $d_t(\cdot)$ is increasing and convex and a front-loading condition holds, then exactly two solutions exist.*
Extension 2: Deficit Response

• In T-period model, suppose that $d_t(b_T)$
 • Sovereign responds to expected debt build-up (or spreads, default prob, etc.)
 • Assume $d_t(\cdot)$ continuous, twice differentiable

Proposition

Under a feasibility condition, a positive economy $\langle \langle b_0, \{d_t(\cdot)\}_{t=0}^{T-1} \rangle \rangle$ will have at least two distinct financing trajectories. Further, if each $d_t(\cdot)$ is increasing and convex and a front-loading condition holds, then exactly two solutions exist.

• Can augment model to include possibility of banking sector bailout
 • Much more action on B/Y
Extension 3: Uncertainty

- Introduce rollover risk in period 1
 - $N < \infty$ potential states with distribution $\{\pi_s\}_{s=1}^{N}$
 - Period 1 deficit is state-dependent: $d_1(s)$
 - Commitment condition, budget condition, and no-arbitrage condition hold in each state
Extension 3: Uncertainty

- Introduce rollover risk in period 1
 - $N < \infty$ potential states with distribution $\{\pi_s\}_{s=1}^{N}$
 - Period 1 deficit is state-dependent: $d_1(s)$
 - Commitment condition, budget condition, and no-arbitrage condition hold in each state
- Economy is described by $<< b_0, d_0, \{d_1(s)\}_{s=1}^{N} >>$ and the distribution across s
- Solution given by $<< b_1, \{b_2(s)\}_{s=1}^{N} >>$
Extension 3: Uncertainty

Proposition

Under a feasibility condition and a front-loading condition, a positive economy \(<\langle b_0, d_0, \{d_1(s)\}_{s=1}^N \rangle\rangle\) will have at least two distinct solutions. Further, if \(<\langle b_{L,1}, \{b_L(s)\}_{s=1}^N \rangle\rangle\) and \(<\langle b_{H,1}, \{b_H(s)\}_{s=1}^N \rangle\rangle\) are components of those two distinct solutions and wlog it must be the case that \(b_L(s) \leq b_H(s)\) for any \(s \in S\) and that only the lesser solution will be numerically stable.
Extension 3: Uncertainty

Proposition

Under a feasibility condition and a front-loading condition, a positive economy $b_0, d_0, \{d_1(s)\}_{s=1}^{N}$ will have at least two distinct solutions. Further, if $b_L, \{b_L(s)\}_{s=1}^{N}$ and $b_H, \{b_H(s)\}_{s=1}^{N}$ are components of those two distinct solutions and wlog it must be the case that $b_L(s) \leq b_H(s)$ for any $s \in S$ and that only the lesser solution will be numerically stable.

Generalizes deterministic existence result
Example with Uncertainty: $N = 25$
Conclusion

- Tractable, three period model in which multiple financing trajectories arise as a result of coordination failures with long-term debt
- Calibrate to Ireland \rightarrow Substantial impact on spreads
Conclusion

- Tractable, three period model in which multiple financing trajectories arise as a result of coordination failures with long-term debt
- Calibrate to Ireland → Substantial impact on spreads
- Analyzed policy
 1. Liquidity provision by central bank effective
 2. Immediate austerity remedies coordination failure
 3. Backloaded austerity makes it worse
Conclusion

- Tractable, three period model in which multiple financing trajectories arise as a result of coordination failures with long-term debt
- Calibrate to Ireland → Substantial impact on spreads
- Analyzed policy
 1. Liquidity provision by central bank effective
 2. Immediate austerity remedies coordination failure
 3. Backloaded austerity makes it worse
- Further work:
 - Infinite-horizon limiting case: Commitment in all periods (in progress)
 - Empirical identification
 - Application to other markets (commercial paper, municipal debt, etc.)