Comparative Valuation Dynamics in Models with Financial Frictions

Lars Peter Hansen
Joseph Huang
Paymon Khorrami
Fabrice Tourre

The University of Chicago
Northwestern University

January 26, 2018
Motivation

- Since the seminal papers of Kiyotaki & Moore (1997) and Bernanke et al (1999), explosion of papers focused on aggregate risk and financial frictions:
Motivation

Since the seminal papers of Kiyotaki & Moore (1997) and Bernanke et al (1999), explosion of papers focused on aggregate risk and financial frictions:

- Basak & Cuoco (1998)
Motivation

Since the seminal papers of Kiyotaki & Moore (1997) and Bernanke et al (1999), explosion of papers focused on aggregate risk and financial frictions:

- Basak & Cuoco (1998)
- He & Krishnamurthy (2012)
Motivation

Since the seminal papers of Kiyotaki & Moore (1997) and Bernanke et al (1999), explosion of papers focused on aggregate risk and financial frictions:

- Basak & Cuoco (1998)
- He & Krishnamurthy (2012)
- Brunnermeier & Sannikov (2014)

This prompts the following questions:

- What are the differences between those models?
- What are their similarities?
- How could we tell them apart if we had the “right” data?
Motivation

Since the seminal papers of Kiyotaki & Moore (1997) and Bernanke et al (1999), explosion of papers focused on aggregate risk and financial frictions:

- Basak & Cuoco (1998)
- He & Krishnamurthy (2012)
- Brunnermeier & Sannikov (2014)
- Moreira & Savov (2014)
Since the seminal papers of Kiyotaki & Moore (1997) and Bernanke et al (1999), explosion of papers focused on aggregate risk and financial frictions:

- Basak & Cuoco (1998)
- He & Krishnamurthy (2012)
- Brunnermeier & Sannikov (2014)
- Moreira & Savov (2014)
- Phelan (2016)
Since the seminal papers of Kiyotaki & Moore (1997) and Bernanke et al (1999), explosion of papers focused on aggregate risk and financial frictions:

- Basak & Cuoco (1998)
- He & Krishnamurthy (2012)
- Brunnermeier & Sannikov (2014)
- Moreira & Savov (2014)
- Phelan (2016)
- Di Tella (2017)
Since the seminal papers of Kiyotaki & Moore (1997) and Bernanke et al (1999), explosion of papers focused on aggregate risk and financial frictions:

- Basak & Cuoco (1998)
- He & Krishnamurthy (2012)
- Brunnermeier & Sannikov (2014)
- Moreira & Savov (2014)
- Phelan (2016)
- Di Tella (2017)
- Caballero & Simsek (2017)
Motivation

Since the seminal papers of Kiyotaki & Moore (1997) and Bernanke et al (1999), explosion of papers focused on aggregate risk and financial frictions:

- Basak & Cuoco (1998)
- He & Krishnamurthy (2012)
- Brunnermeier & Sannikov (2014)
- Moreira & Savov (2014)
- Phelan (2016)
- Di Tella (2017)
- Caballero & Simsek (2017)

This prompts the following questions:
Since the seminal papers of Kiyotaki & Moore (1997) and Bernanke et al (1999), explosion of papers focused on aggregate risk and financial frictions:

- Basak & Cuoco (1998)
- He & Krishnamurthy (2012)
- Brunnermeier & Sannikov (2014)
- Moreira & Savov (2014)
- Phelan (2016)
- Di Tella (2017)
- Caballero & Simsek (2017)

This prompts the following questions:
- What are the differences between those models?
Motivation

Since the seminal papers of Kiyotaki & Moore (1997) and Bernanke et al (1999), explosion of papers focused on aggregate risk and financial frictions:

- Basak & Cuoco (1998)
- He & Krishnamurthy (2012)
- Brunnermeier & Sannikov (2014)
- Moreira & Savov (2014)
- Phelan (2016)
- Di Tella (2017)
- Caballero & Simsek (2017)

This prompts the following questions:

- What are the differences between those models?
- What are their similarities?
Since the seminal papers of Kiyotaki & Moore (1997) and Bernanke et al. (1999), explosion of papers focused on aggregate risk and financial frictions:

- Basak & Cuoco (1998)
- He & Krishnamurthy (2012)
- Brunnermeier & Sannikov (2014)
- Moreira & Savov (2014)
- Phelan (2016)
- Di Tella (2017)
- Caballero & Simsek (2017)

This prompts the following questions:

- What are the differences between those models?
- What are their similarities?
- How could we tell them apart if we had the “right” data?
Research Goal: Compare/contrast implications of DSGE models with financial frictions
Research Objective

- **Research Goal**: Compare/contrast implications of DSGE models with financial frictions

- **Which Models?**
 - Continuous time with Brownian information structure
 - Non-trivial financial/intermediary sector
 - Financial/contractual frictions impeding the allocation of aggregate risk across economic agents
 - Non-linear behaviors
Research Objective

- **Research Goal**: Compare/contrast implications of DSGE models with financial frictions

- **Which Models?**
 - Continuous time with Brownian information structure
 - Non-trivial financial/intermediary sector
 - Financial/contractual frictions impeding the allocation of aggregate risk across economic agents
 - Non-linear behaviors

- **Which Comparisons?**
 - Macroeconomic quantity implications
 - Asset pricing implications
 - Macro- and micro-prudential policy
A “Nesting” (and Work-in-Progress) Model

"Experts":
- Time Preference: ρ_e
- Risk Aversion: γ_e
- IES: ψ_e
- Productivity: a_e

"Households":
- Time Preference: ρ_h
- Risk Aversion: γ_h
- IES: ψ_h
- Productivity: a_h

Technology:
- $\frac{dk_t}{k_t} = (g_t + \iota_t - \delta) dt + \sqrt{\kappa} \sigma_A \cdot dZ_t$
- $dg_t = -\lambda_g (g_t - g) dt + \sqrt{\kappa} \sigma_g \cdot dZ_t$
- $d \nu_t = -\lambda \nu (\nu_t - \nu) dt + \sqrt{\kappa} \sigma \nu \cdot dZ_t$

DSGE Models with Financial Frictions
January 26, 2018
Nesting Financial Frictions’ Models

Technology

\[
\frac{dk_i}{k_i} = (g_i + \delta) dt + \sqrt{\nu_i} \sigma_A \cdot dZ_i
\]

\[
dg_i = -\lambda_g (g - g_i) dt + \sqrt{\nu_g} \sigma_g \cdot dZ_i
\]

\[
d\nu_i = -\lambda_i (\nu - \nu_i) dt + \sqrt{\nu_i} \sigma_i \cdot dZ_i
\]

“Experts”:
- Time Preference: \(\rho_e \)
- Risk Aversion: \(\gamma_e \)
- IES: \(\psi_e = 1/\gamma_e \)
- Productivity: \(a_e \)

“Households”:
- Time Preference: \(\rho_h = 1 \)
- Risk Aversion: \(\gamma_h = 1 \)
- IES: \(\psi_h = 1 \)
- Productivity: \(a_h = -\infty \)

Basak & Cuoco 1998

- Assets
 - Physical Capital \(q(t) k_e(t) \)
 - Risk Free Short Term Debt
 - Net Worth \(n_e(t) \)
- Liabilities
 - External Equity

- Assets
 - Physical Capital \(q(t) k_h(t) \)
 - Risk Free Short Term Bonds
 - Net Worth \(n_h(t) \)
- Liabilities
 - External Equity
 - Equities

DSGE Models with Financial Frictions

January 26, 2018
Nesting Financial Frictions’ Models

“Experts”:
Time Preference: ρ_e
Risk Aversion: $\gamma_e = 1$
IES: $\psi_e = 1$
Productivity: a_e

Physical Capital $q(t)$ $k(t)$
Risk Free Short Term Debt
Net Worth $n(t)$
External Equity

“Households”:
Time Preference: ρ_h
Risk Aversion: $\gamma_h = 1$
IES: $\psi_h = 1$
Productivity: $a_h = -\infty$

Physical Capital $q(t)$ $k_h(t)$
Risk Free Short Term Bonds
Equities
Net Worth $n_h(t)$

Technology
$$\frac{dk_i}{k_i} = (g_t + \delta) dt + \sqrt{\nu_t} \sigma_A \cdot dZ_t$$
$$dg_i = \lambda_i(g_t - g) dt + \sqrt{\nu_t} \sigma_g \cdot dZ_t$$
$$d\nu_i = \lambda_i(\nu_t - \gamma) dt + \sqrt{\tau_t} \sigma_\nu \cdot dZ_t$$

He & Krishnamurthy 2013

DSGE Models with Financial Frictions
January 26, 2018
Nesting Financial Frictions’ Models

Assets

Risk Free
Short Term
Debt

Physical Capital
q(t) ke(t)

Net Worth
n_e(t)

Liabilities

External Equity

Derivatives

"Experts":
Time Preference: \(\rho_e \)
Risk Aversion: \(\psi_e = 1 \)
IES: \(\gamma_e = 1 \)
Productivity: \(a_e \)

Technology

\[
\frac{dk_t}{k_t} = (\theta + i_t - \delta) dt + \sqrt{\nu_t} \sigma_A \cdot dZ_t
\]

\[
dg_t = -\lambda_g (g_t - g) dt + \sqrt{\nu_t} \sigma_g \cdot dZ_t
\]

\[
d\nu_t = -\lambda \nu_t (\nu_t - \nu) dt + \sqrt{\nu_t} \sigma \nu \cdot dZ_t
\]

"Households":
Time Preference: \(\rho_h \)
Risk Aversion: \(\psi_h = 1 \)
IES: \(\gamma_h = 1 \)
Productivity: \(a_h < a_e \)

BRUNNERMEIER & SANNIKOV 2014

DSGE Models with Financial Frictions
January 26, 2018
Nesting Financial Frictions’ Models

“Experts”:
- Time Preference: \(\rho_e \)
- Risk Aversion: \(\gamma_e \)
- IES: \(\psi_e \neq 1/\gamma_e \)
- Productivity: \(\alpha_e \)

Physical Capital: \(q(t) k_e(t) \)

Risk Free Short Term Debt:

Net Worth: \(n_e(t) \)

External Equity:

Assets

Liabilities

Technology

\[
\frac{dk_i}{k_i} = \left(g_i + \iota_i - \delta \right) dt + \sqrt{\nu_i} \sigma_i dZ_i
\]

\[
dg_i = -\lambda_g (g_i - g) dt + \sqrt{\nu_i} \sigma_g dZ_i
\]

\[
dv_i = -\lambda_v (v_i - v) dt + \sqrt{\nu_i} \sigma_v dZ_i
\]

“Households”:
- Time Preference: \(\rho_h \)
- Risk Aversion: \(\gamma_h \)
- IES: \(\psi_h \neq 1/\gamma_h \)
- Productivity: \(\alpha_h = -\infty \)

Physical Capital: \(q(t) k_h(t) \)

Risk Free Short Term Bonds

Net Worth: \(n_h(t) \)

Equities

Assets

Liabilities

Di Tella 2017

DSGE Models with Financial Frictions

January 26, 2018
Nesting Heterogenous Agents’ Models

Technology

\[
\frac{dk_t}{k_t} = (g_t + \delta) dt + \sqrt{\nu_t} \sigma_A \cdot dZ_t
\]

\[
g_t = \lambda_g (g_t - g) dt + \sqrt{\nu_t} \sigma_g \cdot dZ_t
\]

\[
\nu_t = -\lambda \nu (\nu_t - \nu) dt + \sqrt{\nu_t} \sigma \nu \cdot dZ_t
\]

Garleanu & Panageas 2015

Longstaff & Wang 2012

“Experts”:
- Time Preference: \(\rho_e \)
- Risk Aversion: \(\gamma_e \)
- IES: \(\psi_e \neq 1/\gamma_e \)
- Productivity: \(a_e \)

“Households”:
- Time Preference: \(\rho_h \)
- Risk Aversion: \(\gamma_h \)
- IES: \(\psi_h \neq 1/\gamma_h \)
- Productivity: \(a_h = a_e \)
Nesting Long Run Risk Models

Technology

\[\frac{dk_i}{k_i} = \left(g_t + \delta - \delta \right) dt + \sqrt{\nu_t} \sigma_A \cdot dZ_t \]

\[dg_t = -\lambda_g \left(g_t - g \right) dt + \sqrt{\nu_t} \sigma_g \cdot dZ_t \]

\[d\nu_t = -\lambda_\nu \left(\nu_t - \nu \right) dt + \sqrt{\nu_t} \sigma_\nu \cdot dZ_t \]

“Experts”: Time Preference: \(\rho_e \) Risk Aversion: \(\gamma_e > 1 \) IES: \(\psi_e > 1 \) Productivity: \(a_e \)

“Households”: Time Preference: \(\rho_h = \rho_e \) Risk Aversion: \(\gamma_h = \gamma_e \) IES: \(\psi_h = \psi_e \) Productivity: \(a_h = a_e \)

Assets

- Physical Capital: \(q(t) k_e(t) \)
- Derivatives

Liabilities

- Risk Free Debt
- Derivatives

Bansal & Yaron 2004

- Physical Capital: \(q(t) k_h(t) \)
- Risk Free Short Term Bonds
- Equities
- Derivatives

- Net Worth: \(n_e(t) \)
- Net Worth: \(n_h(t) \)
Agent “i” value function:

\[V_{i,t} = \frac{(n_{i,t}\xi_i(X_t))^{1-\gamma_i}}{1 - \gamma_i} \]
Markovian Equilibrium

- Agent \(i \) value function:

\[
V_{i,t} = \frac{(n_{i,t} \xi_i(X_t))^{1-\gamma_i}}{1 - \gamma_i}
\]

- Look for an equilibrium where agent’s strategies are a function of the model’s state vector \(X_t \in \Omega \)
 - Exogenous states (exp. TFP growth \(g_t \), stochastic vol. \(\nu_t \))
 - Endogenous states (wealth distribution, here simply \(w_t := \frac{n_{e,t}}{N_t} \))
Markovian Equilibrium

- Agent “i” value function:

\[V_{i,t} = \frac{(n_{i,t} \xi_i(X_t))^{1-\gamma_i}}{1 - \gamma_i} \]

- Look for an equilibrium where agent’s strategies are a function of the model’s state vector \(X_t \in \Omega \)
 - Exogenous states (exp. TFP growth \(g_t \), stochastic vol. \(\nu_t \))
 - Endogenous states (wealth distribution, here simply \(w_t := \frac{n_{e,t}}{N_t} \))

- \(X_t \) follows dynamics:

\[dX_t = \mu_X(X_t) \, dt + \sigma_X(X_t) \cdot dZ_t \]
Agent “i” value function:

\[V_{i,t} = \frac{(n_{i,t} \xi_i(X_t))^{1-\gamma_i}}{1 - \gamma_i} \]

Look for an equilibrium where agent’s strategies are a function of the model’s state vector \(X_t \in \Omega \)

- Exogenous states (exp. TFP growth \(g_t \), stochastic vol. \(\nu_t \))
- Endogenous states (wealth distribution, here simply \(w_t := \frac{n_{e,t}}{N_t} \))

\(X_t \) follows dynamics:

\[dX_t = \mu_X (X_t) \, dt + \sigma_X (X_t) \cdot dZ_t \]

Endogenous state space partition \(\Omega = \Omega_u \cup \Omega_c \cup \Omega_d \)
Solution Strategy and Numerical Challenges

- Complex fixed point problem in the space of functions:
 \[\{\xi_i(X)\} \rightarrow (r(X), \pi(X), q(X), \mu_X(X), \sigma_X(X)) \rightarrow \{\xi_i(X)\} \]
Solution Strategy and Numerical Challenges

- Complex fixed point problem in the space of functions:
 \[\{\xi_i(X)\} \rightarrow (r(X), \pi(X), q(X), \mu_X(X), \sigma_X(X)) \rightarrow \{\xi_i(X)\} \]

- \(\{\xi_i\}_{i \in \{e,h\}} \) solve a set of second order non-linear elliptic PDEs
Solution Strategy and Numerical Challenges

- Complex fixed point problem in the space of functions:
\[\{\xi_i(X)\} \rightarrow (r(X), \pi(X), q(X), \mu_X(X), \sigma_X(X)) \rightarrow \{\xi_i(X)\} \]

- \(\{\xi_i\}_{i \in \{e, h\}} \) solve a set of second order non-linear elliptic PDEs

- Numerical considerations:
 - Finite difference scheme
 - Non-linear PDE that requires iteration scheme
 - Inversion of very large (sparse) matrices
 - Boundary conditions
 - No guarantee of convergence
Solution Strategy and Numerical Challenges

- Complex fixed point problem in the space of functions:
 \[\{\xi_i(X)\} \rightarrow (r(X), \pi(X), q(X), \mu_X(X), \sigma_X(X)) \rightarrow \{\xi_i(X)\} \]

- \(\{\xi_i\}_{i \in \{e,h\}} \) solve a set of second order non-linear elliptic PDEs

- Numerical considerations:
 - Finite difference scheme
 - Non-linear PDE that requires iteration scheme
 - Inversion of very large (sparse) matrices
 - Boundary conditions
 - No guarantee of convergence

- Implementation:
 - Core computations performed in C++ (allowing for HPC)
 - Shell in high-level languages (Matlab, Python) will be available
Traditional Diagnostics

- Stochastic discount factor(s)

\[
\frac{dS_{i,t}}{S_{i,t}} = -r(X_t)dt - \pi_i(X_t) \cdot dZ_t
\]
Traditional Diagnostics

- Stochastic discount factor(s)

\[
\frac{dS_{i,t}}{S_{i,t}} = -r(X_t) dt - \pi_i(X_t) \cdot dZ_t
\]

- Aggregate state dynamics

\[
dX_t = \mu_X(X_t) dt + \sigma_X(X_t) \cdot dZ_t
\]
Traditional Diagnostics

- Stochastic discount factor(s)

\[
\frac{dS_{i,t}}{S_{i,t}} = -r(X_t)dt - \pi_i(X_t) \cdot dZ_t
\]

- Aggregate state dynamics

\[
dX_t = \mu_X(X_t)dt + \sigma_X(X_t) \cdot dZ_t
\]

- Stationary density \(f(X) \), solution of KF equation
Stationary Distribution

[Diagram showing two contour plots with the x-axis labeled 'omega' and the y-axis labeled 'g'.]
Shock elasticities as counterparts to impulse response functions
Shock elasticities as counterparts to impulse response functions

Consider an (exponential) martingale perturbation $H_{(0,s)}$

$$d \ln M_t = \mu_M(X_t)dt + \sigma_M(X_t) \cdot dZ_t$$

$$\epsilon_M(x, t) : = \lim_{s \to 0} \frac{1}{s} \mathbb{E} \left[\frac{M_t}{M_0} H_{(0,s)} \big| X_0 = x \right]$$
Shock elasticities as counterparts to impulse response functions

Consider an (exponential) martingale perturbation $H_{(0,s)}$

$$d \ln M_t = \mu_M(X_t)dt + \sigma_M(X_t) \cdot dZ_t$$

$$\epsilon_M(x, t) := \lim_{s \to 0} \frac{1}{s} \mathbb{E} \left[\frac{M_t}{M_0} H_{(0,s)} | X_0 = x \right]$$

Applications for a cash-flow C_t received at time t

- Shock exposure elasticity $\epsilon_C(x, t)$;
- Shock cost elasticity $\epsilon_{SC}(x, t)$;
- Shock price elasticity $\epsilon_C(x, t) - \epsilon_{SC}(x, t)$
Shock Exposure Elasticities

First Shock
- $g = -1sd; s = -1sd$
- $g = -1sd; s = 1sd$
- $g = 1sd; s = -1sd$
- $g = 1sd; s = 1sd$
- $g = mean; s = mean$

Second Shock

Third Shock

First Shock
- $\omega = -1sd; g = -1sd$
- $\omega = -1sd; g = 1sd$
- $\omega = 1sd; g = -1sd$
- $\omega = 1sd; g = 1sd$
- $\omega = mean; g = mean$

Second Shock

Third Shock
Shock Price Elasticities for “Experts”

DSGE Models with Financial Frictions
January 26, 2018
Shock Price Elasticities for “Households”

DSGE Models with Financial Frictions
January 26, 2018
Study interaction between different aggregate shocks and financial frictions
Conclusion / Next Steps

- Study interaction between different aggregate shocks and financial frictions
- Consider additional types of financial constraints
Conclusion / Next Steps

- Study interaction between different aggregate shocks and financial frictions
- Consider additional types of financial constraints
- Analyze link between heterogenous preference models, heterogenous belief models, financial frictions’ models