Discussion of
- Leverage-induced Fire Sales & Crashes
- Leverage Network & Market Contagion

by
Markus Brunnermeier

MFM Conference 2018

New York, Jan 25th, 2018
2 papers with different focus

- **Amplification**
 - Fire-sales, Liquidity Spirals
 - Losses amplify

- **Contagion/spillovers**

Brunnermeier & Pedersen (2009)
2 papers with different focus

- **Amplification**
 Fire-sales, Liquidity Spirals
 • Losses amplify

- **Contagion/spillovers**
 • Losses spill to other asset
 - 2 asset case

Brunnermeier & Pedersen (2009)
NYSE Margin Debt ... in the US

NYSE Margin Debt and the S&P 500
Real Values (Adjusted to Present-Day Dollars)

Margin Debt in China

Figure 1. This figure shows the Shanghai Stock Exchange (SSE) Composite Index (the red line), as well as the aggregate brokerage-financed margin debt (blue bars, in billions), at the end of each day for the period October 2014 to August 2015.
Absorbers vs. amplifier

<table>
<thead>
<tr>
<th>Direct</th>
<th>Indirect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contractual links</td>
<td>“Virtual links”</td>
</tr>
<tr>
<td>Loss through bankruptcy/default</td>
<td>Share similar exposure with other levered players</td>
</tr>
<tr>
<td>Position data</td>
<td>Response indicator</td>
</tr>
<tr>
<td></td>
<td>- expectations/constraints</td>
</tr>
</tbody>
</table>

- Shock absorber
- Shock amplifier
Liquidity mismatch – not maturity mismatch

- Technological Illiquidity
 - Irreversibility

- Market Illiquidity
 - Price Impact

- Fund Illiquidity
 - Maturity
 - Haircut/margin sensitivity

See Brunnermeier, Gorton & Krishnamurthy (2012)
Data

- Chinese margin account data
 - 180k brokerage-financed/150k shadow-financed accounts
 - Cover 5% of the margin system
 - Observe asset portfolio, debt at daily-account level

- Time frame: May – July 2015

- Stock market index:
Figure 2. This figure shows the average leverage ratio of brokerage-financed margin accounts (red line) and that of shadow-financed margin account at the end of each day for the period May to July 2015.
Contrasting papers: Deleveraging

- Spiral Paper
 - Avoid leverage constraint

- Contagion Paper
 - Aim at leverage target
Contrasting papers: Deleveraging

- **Spiral Paper**
 - Avoid leverage constraint

- **Contagion Paper**
 - Aim at leverage target

\[P_{j,t} = \frac{\text{Lev}_{j,t-1}}{\text{Lev}_{j,t-1}} \] (at 8:00 a.m.)

- Regress net sell stock \(i \), account \(j \)
- \(\delta_{i,j,t} \propto P_{j,t} \)
Contrasting papers: Deleveraging

- **Spiral Paper**
 - Avoid leverage constraint

 \[P_{j,t} = \frac{\text{Lev}_{j,t-1}}{\text{Lev}_{j,t-1}} \] (at 8:00 a.m.)

- Regress net sell stock \(i \), account \(j \)

- \(\delta_{i,j,t} \propto P_{j,t} \)

- **Contagion Paper**
 - Aim at leverage target

 - Contagion depends on
 - Deviation from target leverage
 - Portfolio weight of stock \(i \) in account \(j \)

 \[\delta_{i,j,t} \propto w_{i,j} \Delta \text{Lev}_{j,t} \]

 \[\propto -w_{i,j} \text{Lev}_{j,t-1} R_{j,t-1} \]

 \[\propto -w_{i,j} \text{Lev}_{j,t-1} R_{i2,j,t-1} \]
Contrasting papers: Asset Pricing

- Measure of Sell Pressure on returns across horizons

- Spiral paper
 \[\text{Pressure}_{i,j,t} = \#_{i,j,t} \cdot 1_{P_{j,t} > 0.6} \]

- Contagion paper
 \[\text{Pressure}_{i,j,t} = \sum_{i_2 \neq i} w_{i,j} \text{Lev}_{j,t-1} R_{i_2,j,t-1} \]

- Linear!

- Stock-level: \(\text{Pressure}_{i,t} = \sum_{j} \text{Pressure}_{i,j,t} \)
- Regress stock returns across horizons
 \[R_{i,t} \rightarrow t+h \propto \text{Pressure}_{i,t} \]
Reversal Speed

- Spiral paper
 - Reversal after 30 days

- Contagion paper
 - Reversal after 5 days

- Is contagion less important quantitatively?
Pricking Bubble vs. temp. illiquidity

- Finding:
 - Deleveraging “depresses” price temporarily but returns after 30 days (spiral paper) / 5 days (contagion paper)
 - Suggests temporary liquidity problem
- ... pure cross-sectional results (CAR)
Pricking Bubble vs. temp. illiquidity

- Finding:
 - Deleveraging “depresses” price temporarily but returns after 30 days (spiral paper) / 5 days (contagion paper)
 - Suggests temporary liquidity problem

- ... pure cross-sectional results (CAR)

- Did it prick a bubble?

- Did it speed up bursting of the bubble (too much)?
 - Long run (real) impact of fast deleveraging?
 - Deleveraging contributes to slowdown of long run growth?
Disposition effect vs. Deleveraging

- **Dispositional Effect absorber**
 - Buy tomorrow after today’s loss
 - Potentially Strong for Chinese Market

- **Deleveraging (Contagion) amplifier**
 - Sell tomorrow after today’s loss

<table>
<thead>
<tr>
<th>Panel B: Interacting Portfolio Returns with Leverage Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brokerage-Financed Margin Accounts</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Account_Return (t-1)</td>
</tr>
<tr>
<td>-0.206**</td>
</tr>
<tr>
<td>(-2.12)</td>
</tr>
<tr>
<td>Account_Return (t-1)</td>
</tr>
<tr>
<td>0.037**</td>
</tr>
<tr>
<td>(2.64)</td>
</tr>
</tbody>
</table>

- The account with average leverage seems to have net buy order?
- Dispositional Effect as shock absorber?
- Is aggregate impact large?
Nonlinearity

- Linear regression
 - Nice result on nonlinearity of proximity to constraint
 - \(\delta_{i,j,t} = \sum_k \lambda_k I_{k,t-1}^j + \mu_{i,t} + \alpha_j + \text{error} \)

- Why not apply the same idea for asset return test?
 - Current test: \(R_{i,t\to t+h} \) linear in \(\text{Pressure}_{i,t} / \text{Network Cent}_{i,t} \)
 - Could test nonlinearity of measures.
Quantile/CoVaR Regressions

- “Tail-dependency”
- Quantile-regress
- \(F_R^{-1}(q|\text{pressure}_{i,t}) = \alpha_q + \beta_q \text{Pressure}_{i,t} \)

- If pressure of other stocks is high, then return on stock low (controlling for its own pressure)
Quantile Regressions: A Refresher

- **OLS Regression:** min sum of squared residuals
 \[\beta^{OLS} = \arg\min_{\alpha, \beta} \sum (y_i - \alpha - \beta x_i)^2 \]

 - Predicted value \(E[y|x] = \alpha + \beta x \)

- **Quantile Regression:** min weighted absolute values
 \[\beta^q = \arg\min_{\alpha, \beta} \sum_i q |y_i - \alpha - \beta x_i| \quad \text{if } (y_i - \alpha - \beta x_i) \geq 0 \]
 \[\sum_i (1-q)|y_i - \alpha - \beta x_i| \quad \text{if } (y_i - \alpha - \beta x_i) < 0 \]

 - Predicted value \(\text{VaR}_q|x = F^{-1}_y(q|x) = \alpha_q + \beta_q x \)
q-Sensitivities

CS/Tremont Hedge Fund Index

- Fixed Income Arbitrage
- 50%-Sensitivity
- 5%-Sensitivity
- 1%-Sensitivity
Loss vs. Margin Spiral

- Loss spiral

- Margin spiral (Repo Run as a special case)
 - Only to the extent that “announcement” of shadow bank margin regulation tightened expected future margins (precautionary)
More on margin spiral

- US CDS Market
 Capponi, Cheng, Giglio and Hanyes (2017) explores margin spiral.
 - Margins are more conservatively set than what VaR implies

- US Futures Market
Controversy: Pro-/Countercyclical Leverage

- Procyclical vs. countercyclical leverage

![Graphs showing the relationship between total asset growth and leverage growth for primary dealers and banks.](Fig. 3. Total assets and leverage of commercial banks. Fig. 4. Total assets and leverage of security brokers and dealers.)

Source: Adrian and Shin (2010)
Timing of amplification/contagion

- Reverse causality challenge
 - Price decline ⇒ Leverage rise ⇒ fire-sale ⇒ ...
 - simultaneous vs. lagged

- In theory simultaneous
 - Simultaneous equation problem
 - Same-day contagion should be stronger than lagged-contagion

- Challenge: identification of shock
<table>
<thead>
<tr>
<th>Panel A: Account Trading in Response to Lagged Portfolio Returns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brokerage-Financed Margin Accounts</td>
</tr>
<tr>
<td>------------------------------------</td>
</tr>
<tr>
<td>(1)</td>
</tr>
<tr>
<td>Account Return (t-1)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Account Return (t-2)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Account Return (t-3)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Account Return (t-4)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Account Return (t-5)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Adj-R²</td>
</tr>
<tr>
<td>No. Obs. (*1000)</td>
</tr>
</tbody>
</table>

* Significant at the 1% level
Standard Errors

- **Why is controlling for leverage so important to get tight standard errors?**

Panel B: Interacting Portfolio Returns with Leverage Ratio

<table>
<thead>
<tr>
<th></th>
<th>Brokerage-Financed Margin Accounts</th>
<th>Shadow-Financed Margin Accounts</th>
<th>All Margin Accounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account Return (t-1)</td>
<td>-0.206***</td>
<td>-0.363***</td>
<td>-0.422***</td>
</tr>
<tr>
<td></td>
<td>(-2.12)</td>
<td>(-5.85)</td>
<td>(3.13)</td>
</tr>
<tr>
<td>Account Return (t-1)</td>
<td>0.037**</td>
<td>0.091***</td>
<td>0.129***</td>
</tr>
<tr>
<td>*Leverage</td>
<td>(2.64)</td>
<td>(7.00)</td>
<td>(5.86)</td>
</tr>
<tr>
<td>Positive Account Return (t-1)</td>
<td>0.229</td>
<td>-0.211**</td>
<td>0.304</td>
</tr>
<tr>
<td></td>
<td>(1.47)</td>
<td>(-2.37)</td>
<td>(1.60)</td>
</tr>
<tr>
<td>Positive Account Return (t-1) * Leverage</td>
<td>-0.036</td>
<td>0.033</td>
<td>-0.054**</td>
</tr>
<tr>
<td></td>
<td>(-0.86)</td>
<td>(1.38)</td>
<td>(-2.51)</td>
</tr>
<tr>
<td>Negative Account Return (t-1)</td>
<td>-0.671***</td>
<td>-0.454***</td>
<td>-1.094***</td>
</tr>
<tr>
<td></td>
<td>(-4.30)</td>
<td>(-3.60)</td>
<td>(-6.75)</td>
</tr>
<tr>
<td>Negative Account Return (t-1) * Leverage</td>
<td>0.104***</td>
<td>0.144***</td>
<td>0.289***</td>
</tr>
<tr>
<td></td>
<td>(3.47)</td>
<td>(6.26)</td>
<td>(8.25)</td>
</tr>
<tr>
<td>Leverage</td>
<td>0.004***</td>
<td>0.006***</td>
<td>0.002**</td>
</tr>
<tr>
<td></td>
<td>(4.12)</td>
<td>(3.28)</td>
<td>(2.11)</td>
</tr>
<tr>
<td>Adj-R²</td>
<td>0.28</td>
<td>0.29</td>
<td>0.17</td>
</tr>
<tr>
<td>*No. Obs. (1000)</td>
<td>3201</td>
<td>3201</td>
<td>2603</td>
</tr>
</tbody>
</table>

Brunnermeier
Standard Errors

Why is controlling for leverage so important to get tight standard errors?

Panel B: Interacting Portfolio Returns with Leverage Ratio

<table>
<thead>
<tr>
<th></th>
<th>Brokerage-Financed Margin Accounts</th>
<th>Shadow-Financed Margin Accounts</th>
<th>All Margin Accounts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Account_Return (t-1)</td>
<td>-0.206***</td>
<td>-0.363***</td>
<td>-0.422***</td>
</tr>
<tr>
<td></td>
<td>(-2.12)</td>
<td>(-5.85)</td>
<td>(3.13)</td>
</tr>
<tr>
<td>Account_Return(t-1)</td>
<td>0.037**</td>
<td>0.091***</td>
<td>0.129***</td>
</tr>
<tr>
<td>*Leverage</td>
<td>(2.64)</td>
<td>(7.00)</td>
<td>(5.86)</td>
</tr>
<tr>
<td>Positive Account_Return</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t-1)</td>
<td>0.229</td>
<td>-0.211**</td>
<td>0.304</td>
</tr>
<tr>
<td></td>
<td>(1.47)</td>
<td>(-2.37)</td>
<td>(1.60)</td>
</tr>
<tr>
<td>Positive Account_Return</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t-1) * Leverage</td>
<td>-0.036</td>
<td>0.033</td>
<td>-0.054**</td>
</tr>
<tr>
<td></td>
<td>(-0.86)</td>
<td>(1.38)</td>
<td>(-2.51)</td>
</tr>
<tr>
<td>Negative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Account_Return(t-1)</td>
<td>-0.671***</td>
<td>-0.454***</td>
<td>-1.094***</td>
</tr>
<tr>
<td></td>
<td>(-4.30)</td>
<td>(-3.60)</td>
<td>(-6.75)</td>
</tr>
<tr>
<td>Negative Account_Return</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t-1) * Leverage</td>
<td>0.104***</td>
<td>0.144***</td>
<td>0.289***</td>
</tr>
<tr>
<td></td>
<td>(3.47)</td>
<td>(6.26)</td>
<td>(8.25)</td>
</tr>
<tr>
<td>Leverage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.004***</td>
<td>0.006***</td>
<td>0.002**</td>
</tr>
<tr>
<td></td>
<td>(4.12)</td>
<td>(3.28)</td>
<td>(2.11)</td>
</tr>
<tr>
<td></td>
<td>0.004***</td>
<td>0.004***</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(4.16)</td>
<td>(1.08)</td>
<td>(1.08)</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.28</td>
<td>0.29</td>
<td>0.17</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>3201</td>
<td>3201</td>
<td>2603</td>
</tr>
</tbody>
</table>

*R^2 similar, but now all significant.
Endogenous Network

- Policy recommendation:
 save stocks in center of contagion network

- ... but network is endogenous?
 - What determines contagion network?
 - Would policy endogenously change network? Lucas critique
 - Map into a structural model
Conclusion

- First-rate papers
- Great dataset
- Convincing evidence for theory
 - Liquidity spirals
 - Contagion in multiple assets case
- Shock amplifiers vs. absorbers
 - Response indicator: Liquidity mismatch
- Loss spiral (readjust leverage) & margin spiral (lower leverage)
- Is it a temporary depressed liquidity (40/5 days) or bursting a bubble (faster)?
- Tail-dependency - Quantile regressions à la CoVaR
- Nice if link investor characteristics to margin account