Solving Heterogeneous Estimating Equations Using Forest Based Algorithms

Susan Athey
Stanford University

Chicago, September 2016

with Julie Tibshirani and Stefan Wager

Also based on Athey and Imbens (2016) and Wager and Athey (2015)
Estimating **heterogeneous treatment effects** lies at the heart of many modern statistical problems:

- **Personalized medicine:** Which form of cancer therapy is most appropriate for this specific patient?
- **Targeted advertising/offers:** What is the best offer for this individual?
- **Fairness in machine learning:** If we automate early screening in college applications, we need to make sure the system doesn’t implicitly discriminate against minorities.
Policy Estimation and Evaluation

Heterogeneous treatment effect estimation is closely related to the problem of optimal policy estimation and evaluation.

- What is the best policy for assigning individuals to medicine?
- Can I reject the hypothesis that my new assignment policy generates the same benefits as alternatives?
- How can I learn optimal policies while minimizing the cost from misassignment along the way?

Two strands of literature crossing many disciplines:

- (Offline) policy estimation and evaluation (Contextual bandits (Langford et al), many others; Athey and Wager (in progress))
- (Online) multi-armed bandits with state-contingent decision-rules (Langford et al, many others; Athey, Du and Imbens (2016))
ML Methods for Causal Inference: Treatment Effect Heterogeneity

- ML methods perform well in practice, but many do not have well established statistical properties (see Chen and White (1999) for early analysis of neural nets)
- Unlike prediction, ground truth for causal parameters not directly observed
- Need valid confidence intervals for many applications (AB testing, drug trials); challenges include adaptive model selection and multiple testing
- Different possible questions of interest, e.g.:
 - Identifying subgroups (Athey and Imbens, 2016)
 - Testing for heterogeneity across all covariates (List, Shaikh, and Xu, 2016)
 - Robustness to model specification (Athey and Imbens, 2015)
 - Personalized estimates (Wager and Athey, 2015; Taddy et al 2014; others)

NB: See Mullainathan et al on prediction policy; ML in time series
ML Methods for Causal Inference: More general models

- Much recent literature bringing ML methods to causal inference focus on single binary treatment in environment with unconfoundedness
- Economic models often have more complex estimation approaches
 - Quantile regression
 - Instrumental Variables
 - Panel regression
 - Consumer choice
 - Euler equations
 - Survival analysis
ML Methods for Causal Inference: More general models

Average Treatment Effects with IV or Unconfoundedness
- In a series of influential papers, Belloni, Chernozhukov, Hansen, et al generalized LASSO methods to average treatment effect estimation through instrumental variables models, unconfoundedness, and also moment-based methods
 - See also Athey, Imbens and Wager (2016) combine regularized regression and high-dimensional covariate balancing for average treatment effect estimation; and references therein on more recent papers on ATE estimation in high dimensions

Heterogeneous Treatment Effects
- Imai and Ratkovic (2013) analyze treatment effect heterogeneity with LASSO
- Targeted ML (van der Laan, 2006) can be used as a semi-parametric approach to estimating treatment effect heterogeneity
- See Wager and Athey (2015) and Athey and Imbens (2015) for further references on treatment effect heterogeneity
Forests for Semi-Parametric Parameter Heterogeneity

- Semi-parametric GMM/ML uses kernel weighting to estimate personalized model for each individual, weighting nearby observations more.
 - Problem: curse of dimensionality
- We propose forest methods to determine what dimensions matter for “nearby” metric, reducing curse of dimensionality.
 - Estimate model for each point using “forest-based” weights: the fraction of trees in which an observation appears in the same leaf as the target
- We derive splitting rules optimized for objective
- Computational trick:
 - Use approximation to gradient to construct pseudo-outcomes
 - Then apply a splitting rule inspired by regression trees to these pseudo-outcomes
Related Work

(Semi-parametric) local maximum likelihood/GMM

- Local maximum likelihood (Hastie and Tibshirani, 1987) weights nearby observations; e.g. local linear regression. See Loader, C. (1999); also Hastie and Tibshirani (1990) on GAM.
- Lewbel (2006) asymptotic properties of kernel-based local GMM
- Other approaches include Sieve: Chen (2007) reviews Score-based test statistics for parameter heterogeneity
 - Andrews (1993), Hansen (1992), and many others, e.g. structural breaks, using scores of estimating equations
 - Zeiles et al (2008) apply this literature to split points, when estimating models in the leaves of a single tree.

Splitting rules

- CART: MSE of predictions for regression, Gini impurity for classification, survival (see Bouhamad et al (2011))
- Statistical tests, multiple testing corrections: Su et al (2009)
- Causal trees/forests: adaptive v. honest est. (Athey and Imbens, 2016); propensity forests (Wager and Athey, 2015)
The potential outcomes framework

For a set of i.i.d. subjects \(i = 1, ..., n \), we observe a tuple \((X_i, Y_i, W_i)\), comprised of

- A feature vector \(X_i \in \mathbb{R}^p \),
- A response \(Y_i \in \mathbb{R} \), and
- A treatment assignment \(W_i \in \{0, 1\} \).

Following the potential outcomes framework (Holland, 1986, Imbens and Rubin, 2015, Rosenbaum and Rubin, 1983, Rubin, 1974), we posit the existence of quantities \(Y_i^{(0)} \) and \(Y_i^{(1)} \).

- These correspond to the response we would have measured given that the \(i \)-th subject received treatment \((W_i = 1)\) or no treatment \((W_i = 0)\).
The potential outcomes framework

For a set of i.i.d. subjects $i = 1, \ldots, n$, we observe a tuple (X_i, Y_i, W_i), comprised of

- A feature vector $X_i \in \mathbb{R}^p$,
- A response $Y_i \in \mathbb{R}$, and
- A treatment assignment $W_i \in \{0, 1\}$.

Goal is to estimate the conditional average treatment effect

$$\tau(x) = \mathbb{E} \left[Y^{(1)} - Y^{(0)} \mid X = x \right].$$

NB: In experiments, we only get to see $Y_i = Y_i^{(W_i)}$.
If we make no further assumptions, estimating $\tau(x)$ is not possible.

- We assume that we have measured enough features to achieve **unconfoundedness** (Rosenbaum and Rubin, 1983)

 \[
 \{ Y_i^{(0)}, Y_i^{(1)} \} \perp \! \! \! \perp W_i \mid X_i.
 \]

- When this assumption holds, methods based on matching or propensity score estimation are usually consistent.
Baseline method: *k*-NN matching

Consider the *k*-NN matching estimator for $\tau(x)$:

$$\hat{\tau}(x) = \frac{1}{k} \sum_{S_1(x)} Y_i - \frac{1}{k} \sum_{S_0(x)} Y_i,$$

where $S_{0/1}(x)$ is the set of k-nearest cases/controls to x. This is consistent given *unconfoundedness* and regularity conditions.

- **Pro:** Transparent asymptotics and good, robust performance when p is small.
- **Con:** Acute curse of dimensionality, even when $p = 20$ and $n = 20k$.

NB: Kernels have similar qualitative issues as *k*-NN.
Adaptive nearest neighbor matching

Random forests are a popular heuristic for adaptive nearest neighbors estimation introduced by Breiman (2001).

- **Pro:** Excellent empirical track record.
- **Con:** Often used as a black box, without statistical discussion.

There has been considerable interest in using forest-like methods for treatment effect estimation, but without formal theory.

- Green and Kern (2012) and Hill (2011) have considered using **Bayesian forest algorithms** (BART, Chipman et al., 2010).
- Several authors have also studied related **tree-based methods**: Athey and Imbens (2016), Su et al. (2009), Taddy et al. (2014), Wang and Rudin (2015), Zeilis et al. (2008), ...

Wager and Athey (2015) provide the first formal results allowing random forest to be used for provably valid **asymptotic inference**.
Prior work on the statistics of random forests

- There has been considerable interest in characterizing regimes where random forests are consistent: Breiman et al. (1984), Denil et al. (2014), Lin and Jeon (2006), Meinshausen (2006), Scornet et al. (2015), ...

- Some have focused on simplified forest algorithms, in order to obtain qualitative insights about forests: Arlot and Genuer (2014), Biau (2012), Biau et al. (2008), Bühlmann and Yu (2002), Duroux and Scornet (2016), Geurts et al. (2006), ...

- There are some recent results on variance estimation for forests (Mentch and Hooker, 2016; Sexton and Laake, 2009), but they do not yield formally valid confidence intervals.
Prior work on the statistics of random forests

- Mentch and Hooker, 2016: “Finally, recall that these confidence intervals are for the expected prediction θ_{kn} and not necessarily for the true value of the underlying regression function θ. If the tree building method employed is consistent so that $\theta_{kn} \rightarrow \theta$, then as the sample size increases, the tree should be (on average) producing more accurate predictions, but in order to claim that our confidence intervals are asymptotically valid for θ we need for this convergence to occur at rate of \sqrt{n}.”
- But the flavor of forest studied in the paper does not converge at that rate, it is bias-dominated.
- They stay closer to typical random forest (no sample splitting)
- The proof method requires small subsamples $\ll \sqrt{n}$ which limits depth of trees, contributes to bias
- Don’t rule out super-efficient forests that have wildly inconsistent predictions (e.g. always predict 0)

So a different approach is needed.
Making k-NN matching adaptive

Athey and Imbens (2016) introduce causal tree: defines neighborhoods for matching based on recursive partitioning (Breiman, Friedman, Olshen, and Stone, 1984), advocate sample splitting (w/ modified splitting rule) to get assumption-free confidence intervals for treatment effects in each leaf.

Euclidean neighborhood, for k-NN matching.

Tree-based neighborhood.
Athey and Imbens (2016) highlight the perils of adaptive estimation for confidence intervals, tradeoff between MSE and coverage.

<table>
<thead>
<tr>
<th></th>
<th>Adaptive to honest†</th>
<th>Coverage of 90% confidence intervals – adaptive</th>
<th>Coverage of 90% confidence intervals – honest</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOT-A/TOT-H</td>
<td>1.021</td>
<td>0.82</td>
<td>0.90</td>
</tr>
<tr>
<td>F-A/F-H</td>
<td>0.491</td>
<td>0.89</td>
<td>0.90</td>
</tr>
<tr>
<td>T-A/T-H</td>
<td>0.935</td>
<td>0.84</td>
<td>0.90</td>
</tr>
<tr>
<td>CT-A/CT-H</td>
<td>0.929</td>
<td>0.85</td>
<td>0.90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Coverage of 90% confidence intervals – honest</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOT-H</td>
<td>0.90</td>
<td>0.89</td>
</tr>
<tr>
<td>F-H</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>TS-H</td>
<td>0.90</td>
<td>0.91</td>
</tr>
<tr>
<td>CT-H</td>
<td>0.89</td>
<td>0.90</td>
</tr>
</tbody>
</table>
Application: Treatment Effect Heterogeneity in Estimating Position Effects in Search

- Queries highly heterogeneous
 - Tens of millions of unique search phrases each month
 - Query mix changes month to month for a variety of reasons
 - Behavior conditional on query is fairly stable

- Desire for segments.
 - Want to understand heterogeneity and make decisions based on it
 - “Tune” algorithms separately by segment
 - Want to predict outcomes if query mix changes
 - For example, bring on new syndication partner with more queries of a certain type
Relevance v. Position

Loss in CTR from Link Demotion (US All Non-Navigational)

- Control (1st Position): 25.4%
 - Original CTR of Position: 4.9%
 - Gain from Increased Relevance: 6.9%
- (1,3): 13.5%
 - Loss from Demotion: 2.1%
- (1,5): 17.9%
 - Loss from Demotion: 3.5%
- (1,10): 21.6%
 - Loss from Demotion: 4.0%

Legend:
- Original CTR of Position
- Gain from Increased Relevance
- Loss from Demotion
Search Experiment Tree: Effect of Demoting Top Link (Test Sample Effects)

Some data excluded with prob p(x): proportions do not match population

Highly navigational queries excluded
Use Test Sample for Segment Means & Std Errors to Avoid Bias

Variance of estimated treatment effects in training sample 2.5 times that in test sample (adaptive estimates biased)
Suppose we have a training set \(\{(X_i, Y_i, W_i)\}_{i=1}^n \), a test point \(x \), and a tree predictor

\[
\hat{\tau}(x) = T(x; \{(X_i, Y_i, W_i)\}_{i=1}^n).
\]

Random forest idea: build and average many different trees \(T^* \):

\[
\hat{\tau}(x) = \frac{1}{B} \sum_{b=1}^B T^*_b(x; \{(X_i, Y_i, W_i)\}_{i=1}^n).
\]
Suppose we have a training set \(\{(X_i, Y_i, W_i)\}_{i=1}^n \), a test point \(x \), and a tree predictor

\[
\hat{\tau} (x) = T (x; \{(X_i, Y_i, W_i)\}_{i=1}^n).
\]

Random forest idea: build and average many different trees \(T^* \):

\[
\hat{\tau} (x) = \frac{1}{B} \sum_{b=1}^B T^*_b (x; \{(X_i, Y_i, W_i)\}_{i=1}^n).
\]

We turn \(T \) into \(T^* \) by:

- Bagging / subsampling the training set (Breiman, 1996); this helps smooth over discontinuities (Bühlmann and Yu, 2002).
- Selecting the splitting variable at each step from \(m \) out of \(p \) randomly drawn features (Amit and Geman, 1997).
Statistical inference with regression forests

Honest trees do not use the same data to select partition (splits) and make predictions. Ex: Split-sample trees, propensity trees.

Theorem. (Wager and Athey, 2015) Regression forests are asymptotically **Gaussian and centered**,

\[
\frac{\hat{\mu}_n(x) - \mu(x)}{\sigma_n(x)} \Rightarrow \mathcal{N}(0, 1), \quad \sigma_n^2(x) \to_p 0,
\]

given the following assumptions (+ technical conditions):

1. **Honesty.** Individual trees are honest.

2. **Subsampling.** Individual trees are built on random subsamples of size \(s \approx n^\beta \), where \(\beta_{\text{min}} < \beta < 1 \).

3. **Continuous features.** The features \(X_i \) have a density that is bounded away from 0 and \(\infty \).

4. **Lipschitz response.** The conditional mean function \(\mu(x) = \mathbb{E}[Y \mid X = x] \) is Lipschitz continuous.
Variance estimation for regression forests

We estimate the variance of the regression forest using the **infinitesimal jackknife for random forests** (Wager, Hastie, and Efron, 2014). For each of the $b = 1, ..., B$ trees comprising the forest, define

- The estimated response as $\hat{\mu}_b^*(x)$, and
- The number of times the i-th observation was used as N_{bi}^*.

Then, defining Cov_* as the covariance taken with respect to all the trees comprising the forest, we set

$$
\hat{\sigma}^2 = \frac{n-1}{n} \left(\frac{n}{n-s} \right)^2 \sum_{i=1}^{n} \text{Cov}_* [\hat{\mu}_b^*(x), N_{bi}^*]^2.
$$
Causal forest example

We have \(n = 20k \) observations whose features are distributed as \(X \sim U([-1, 1]^p) \) with \(p = 6 \); treatment assignment is random. All the signal is concentrated along two features.

The plots below depict \(\hat{\tau}(x) \) for 10k random test examples, projected into the 2 signal dimensions.

Causal forest example

We have $n = 20k$ observations whose features are distributed as $X \sim U([-1, 1]^p)$ with $p = 20$; treatment assignment is random. All the signal is concentrated along two features.

The plots below depict $\hat{\tau}(x)$ for 10k random test examples, projected into the 2 signal dimensions.

true effect $\tau(x)$ causal forest k-NN estimate

Causal forest example

The causal forest dominates k-NN for both bias and variance. With $p = 20$, the relative mean-squared error (MSE) for τ is

$$\frac{\text{MSE for } k\text{-NN (tuned on test set)}}{\text{MSE for forest (heuristically tuned)}} = 19.2.$$

causal forest \hspace{1cm} k$\text{-NN estimate$

For $p = 6$, the corresponding MSE ratio for τ is 2.2.
Application: General Social Survey

The General Social Survey is an extensive survey, collected since 1972, that seeks to measure demographics, political views, social attitudes, etc. of the U.S. population.

Of particular interest to us is a randomized experiment, for which we have data between 1986 and 2010.

- **Question A:** Are we spending too much, too little, or about the right amount on welfare?
- **Question B:** Are we spending too much, too little, or about the right amount on assistance to the poor?

Treatment effect: how much less likely are people to answer too much to question B than to question A.

- We want to understand how the treatment effect depends on covariates: political views, income, age, hours worked, ...

NB: This dataset has also been analyzed by Green and Kern (2012) using Bayesian additive regression trees (Chipman, George, and McCulloch, 2010).
Application: General Social Survey

A causal forest analysis uncovers strong treatment heterogeneity ($n = 28,686, p = 12$).
We have $i = 1, \ldots, n$ i.i.d. samples, each of which has an observable quantity O_i, and a set of auxiliary covariates X_i.

Examples:

- Non-parametric regression: $O_i = \{Y_i\}$.
- Treatment effect estimation: $O_i = \{Y_i, W_i\}$.
- Instrumental variables regression: $O_i = \{Y_i, W_i, Z_i\}$.

Our parameter of interest, $\theta(x)$, is characterized by an estimating equation:

$$
\mathbb{E} \left[\psi_{\theta(x), \nu(x)} (O_i) \mid X_i = x \right] = 0 \text{ for all } x \in \mathcal{X},
$$

where $\nu(x)$ is an optional nuisance parameter.
The GMM Setup: Examples

Our parameter of interest, $\theta(x)$, is characterized by

$$\mathbb{E} \left[\psi_{\theta(x)}, \nu(x) \left(O_i \right) \mid X_i = x \right] = 0 \text{ for all } x \in \mathcal{X},$$

where $\nu(x)$ is an optional nuisance parameter.

- **Quantile regression**, where $\theta(x) = F_x^{-1}(q)$ for $q \in (0, 1)$:

 $$\psi_{\theta(x)}(Y_i) = q \mathbf{1} \left(\{ Y_i > \theta(x) \} \right) - (1 - q) \mathbf{1} \left(\{ Y_i \leq \theta(x) \} \right)$$

- **IV regression**, with treatment assignment W and instrument Z. We care about the treatment effect $\tau(x)$:

 $$\psi_{\tau(x), \mu(x)} = \begin{pmatrix} Z_i (Y_i - W_i \tau(x) - \mu(x)) \\ Y_i - W_i \tau(x) - \mu(x) \end{pmatrix}.$$
Solving heterogeneous estimating equations

The classical approach is to rely on local solutions (Fan and Gijbels, 1996; Hastie and Tibshirani, 1990; Loader, 1999).

\[
\sum_{i=1}^{n} \alpha(x; X_i) \psi_{\hat{\theta}(x), \hat{\nu}(x)} (O_i) = 0,
\]

where the weights \(\alpha(x; X_i) \) are obtained from, e.g., a kernel.

We use random forests to get good data-adaptive weights. Has potential to be helpful in mitigating the curse of dimensionality.

▶ Building many trees with small leaves, then solving the estimating equation in each leaf, and finally averaging the results is a bad idea. Quantile and IV regression are badly biased in very small samples.

▶ Using RF as an “adaptive kernel” protects against this effect.
The random forest kernel

Forests induce a kernel via **averaging tree-based neighborhoods**. This idea was used by Meinshausen (2006) for quantile regression.
Solving estimating equations with random forests

We want to use an estimator of the form

\[
\sum_{i=1}^{n} \alpha(x; X_i) \psi_{\hat{\theta}(x), \hat{\nu}(x)}(O_i) = 0,
\]

where the weights \(\alpha(x; X_i)\) are from a random forest.

Key Challenges:

- How do we grow trees that yield an **expressive** yet **stable** neighborhood function \(\alpha(\cdot; X_i)\)?
- We do not have access to “**prediction error**” for \(\theta(x)\), so how should we **optimize splitting**?
- How should we account for **nuisance parameters**?
- Split evaluation rules need to be **computationally efficient**, as they will be run many times for each split in each tree.
Step #1: Conceptual motivation

Following CART (Breiman et al., 1984), we use greedy splits. Each split directly seeks to improve the fit as much as possible.

- For regression trees, in large samples, the best split is that which increases the heterogeneity of the predictions the most.
- The same fact also holds locally for estimating equations.

We split a parent node P into two children C_1 and C_2. In large samples and with no computational constraints, we would like to maximize

$$\Delta (C_1, C_2) = n_{C_1} n_{C_2} \left(\hat{\theta}_{C_1} - \hat{\theta}_{C_2} \right)^2,$$

where $\hat{\theta}_{C_1}, \hat{\theta}_{C_2}$ solve the estimating equation in the children.
Step #2: Practical realization

Computationally, solving the estimating equation in each possible child to get $\hat{\theta}_{C_1}$ and $\hat{\theta}_{C_2}$ can be prohibitively expensive.

To avoid this problem, we use a gradient-based approximation. The same idea underlies gradient boosting (Friedman, 2001).

$$\hat{\theta}_C \approx \tilde{\theta}_C := \hat{\theta}_P - \frac{1}{|\{i : X_i \in C\}|} \sum_{\{i : X_i \in C\}} \xi^\top A_P^{-1} \psi_{\hat{\theta}_P, \hat{\nu}_P} (O_i),$$

$$A_P = \frac{1}{|\{i : X_i \in P\}|} \sum_{\{i : X_i \in P\}} \nabla \psi_{\hat{\theta}_P, \hat{\nu}_P} (O_i),$$

where $\hat{\theta}_P$ and $\hat{\nu}_P$ are obtained by solving the estimating equation once in the parent node, and ξ is a vector that picks out the θ-coordinate from the (θ, ν) vector.
Step #2: Practical realization

In practice, this idea leads to a split-relabel algorithm:

1. **Relabel step**: Start by computing pseudo-outcomes

 \[
 \tilde{Y}_i = -\xi^\top A_p^{-1} \psi_{\hat{\theta}_p, \hat{\nu}_p} (O_i) \in \mathbb{R}.
 \]

2. **Split step**: Apply a CART-style regression split to the \(\tilde{Y}_i\).

This procedure has several advantages, including the following:

- **Computationally**, the most demanding part of growing a tree is in scanning over all possible splits. Here, we reduce to a regression split that can be efficiently implemented.

- **Statistically**, we only have to solve the estimating equation once. This reduces the risk of hitting a numerically unstable leaf—which can be a risk with methods like IV.

- **From an engineering perspective**, we can write a single, optimized split-step algorithm, and then use it everywhere.
Step #3: Variance correction

Conceptually, we saw that—in large samples—we want splits that maximize the heterogeneity of the $\hat{\theta}(X_i)$. In small samples, we need to account for sampling variance.

We need to penalize for the following two sources of variance.

- Our **plug-in estimates** for the heterogeneity of $\hat{\theta}(X_i)$ will be overly optimistic about the large-sample parameter heterogeneity. We need to correct for this kind of over-fitting.

- We anticipate “honest” estimation, and want to avoid leaves where the estimating equation is unstable. For example, with IV regression, we want to avoid leaves with an unusually weak 1st-stage coefficient.

This is a generalization of the analysis of Athey and Imbens (2016) for treatment effect estimation.
Simulation example: Quantile regression

In quantile regression, we want to estimate the q-th quantile of the conditional distribution of Y given X, namely $\theta(x) = F_x^{-1}(q)$.

- Meinshausen (2006) used the random forest kernel for quantile regression. However, he used standard CART regression splitting instead of a tailored splitting rule.
- In our split-relabel paradigm, *quantile splits* reduce to *classification splits* ($\hat{\theta}_P$ is the q-th quantile of the parent):

 $$\tilde{Y}_i = 1 \left(\{ Y_i > \hat{\theta}_P \} \right).$$

- To estimate many quantiles, we do multi-class classification.
Simulation example: Quantile regression

The above examples show quantile estimates at $q = 0.1, 0.5, 0.9$, on Gaussian data with $n = 2,000$ and $p = 40$. The package quantregForest implements the method of Meinshausen (2006).
Simulation example: Instrumental variables

We want to estimate **heterogeneous treatment effects** with endogenous treatment assignment: \(Y_i \) is the treatment, \(W_i \) is the treatment assignment, and \(Z_i \) is an instrument satisfying:

\[
\{ Y_i(w) \}_{w \in W} \perp Z_i \mid X_i.
\]

▶ Our **split-relabel** formalism tells us to use pseudo-outcomes

\[
\tilde{Y}_i = (Z_i - \overline{Z}_p) \left((Y_i - \overline{Y}_p) - \hat{\tau}_P (W_i - \overline{W}_p) \right),
\]

where \(\hat{\tau}_P \) is the IV solution in the parent, and \(\overline{Y}_p, \overline{W}_p, \overline{Z}_p \) are averages over the parent.

▶ This is just IV regression residuals projected onto the instruments.
Simulation example: Instrumental variables

Using IV forests is important

We have spurious correlations:

- OLS for Y on W given X has two jumps, at $X_1 = -1/3$ and at $X_1 = 1/3$.
- The causal effect $\tau(X)$ only has a jump at $X_1 = -1/3$.
- $n = 10,000, p = 20$.

The response function is

$$ Y_i = (2W_i - 1) \mathbf{1}(\{X_{1,i} > -1/3\}) + (3A - 1.5) \mathbf{1}(\{X_{1,i} > 1/3\}) + 2\varepsilon_i. $$

A_i is correlated with W_i.

ε_i
Simulation example: Instrumental variables

Using IV splits is important

We have useless correlations:

- The joint distribution of \((W_i, Y_i)\) is independent of the covariates \(X_i\).
- But: the causal effect \(\tau(X)\) has a jump at \(X_1 = 0\).
- \(n = 5,000, p = 20\).

The response function is

\[
Y_i = 2 \cdot 1 \left(\{X_{1,i} \leq 0\}\right) A_i + 1 \left(\{X_{1,i} > 0\}\right) W_i + (1 + 0.73 \cdot 1 \left(\{X_{1,i} > 0\}\right)) \varepsilon_i.
\]

\(A_i\) is correlated with \(W_i\).
Empirical Application: Family Size

Angrist and Evans (1998) study the effect of family size on women’s labor market outcomes. Understanding heterogeneity can guide policy.

▶ Outcomes: participation, female income, hours worked, etc.
▶ Treatment: more than two kids
▶ Instrument: first two kids same sex
▶ First stage effect of same sex on more than two kids: .06
▶ Reduced form effect of same sex on probability of work, income: .008, $132
▶ LATE estimates of effect of kids on probability of work, income: .133, $2200
Treatment Effects

Effect on Participation

![Graph showing the effect on participation across different father's income levels and ages.](image)

Baseline Probability of Working

![Graph showing the baseline probability of working across different father's income levels and ages.](image)
Treatment Effects

Effect on Participation

Effect relative to Baseline

Father's Income [$1k/year]

CATE

CATE / (Probability of Working)
Treatment Effects

Effect on Earnings

Baseline Earnings

- Father's Income [$1,000/year]
- CATE [$1/year]
- Mother's Baseline Income [$1,000/year]

- 18 years
- 20 years
- 22 years
- 24 years
Alternative: Two Random Forests

Our approach can be compared to building two honest random forests and comparing the ratios; can also use all partitions from both forests to ensure same weighting for both outcomes. Ongoing work: compare alternative approaches.