Discussion of “Reputation and Product Recalls”
by Boyan Jovanovic

Christopher Phelan

University of Minnesota
Federal Reserve Bank of Minneapolis
NBER

October 7, 2016

University of Chicago
Conference in Honor of Robert E. Lucas Jr.,
Phoenix Prize Winner
The Model:

- Discrete time simplification of model.

- McDonald’s Drive Through with long (countably infinite) line of customers: Each customer pays for expected number of fries, but by the time he sees how many in bag, too late to do anything about it.

- In current period, McDonalds can’t do anything to affect the number of fries customer expects. That is an equilibrium object.

- But, if number of fries, $X = 1$, probability of public signal that McD’s ripped off customer is zero. More generally, $1 - X$ is probability of public signal that customer was cheated.
The Model:

- X fries cost McDonalds $\frac{X^2}{2}$, so the marginal fry costs X.

- Marginal benefit is that increasing X linearly lowers probability of the public signal, so optimizing condition is

 \[X = \beta (\text{continuation value if signal does not go off} - \text{continuation value if signal does go off}) \]

 (1)
Equilibria:

- This game has lots of equilibria.

- Boyan uses data to choose among equilibria.

- Not sure this is Kosher.

- Everyone expecting $X = 0$ if the day of the month is a prime number is an equilibrium.

- Suppose that was also what the data showed. Is it ok at that point to simply declare victory?
A Suggestion which selects “Ratchet” strategy as the unique Markov Perfect Equilibrium:

- Borrow from Phelan (JET, 2006)

- Assume behavioral type which must set $X = 1$, with Markov exogenous and hidden type switches.

 - ϵ: probability that optimizing type becomes behavioral type.
 - δ: probability that behavioral type becomes optimizing type.
 - $\frac{\epsilon}{\epsilon + \delta}$ long run or stationary probability of behavioral type.
A Suggestion which selects “Ratchet” equilibrium as the unique Markov Perfect Equilibrium:

- Boyan's Ratchet equilibrium misnamed. A better characterization is a Sisyphus equilibrium.

- Let ρ_i be equilibrium posterior that firm is behavioral type if it has been i periods since the public signal observed.

- Likewise, let X_i be the equilibrium number of fries and V_i be the value to the firm.
A Suggestion which selects “Ratchet” strategy as the unique Markov Perfect Equilibrium:

- Some equations:

\[\rho_0 = \epsilon. \]

\[V_0 = p(\epsilon + (1 - \epsilon)X_0) - \frac{X_0^2}{2} + \beta(1 - \epsilon)((1 - X_0)V_0 + X_0V_1). \]

\[X_0 = \beta(1 - \epsilon)(V_1 - V_0). \]

\[\ldots \]

\[\rho_i = B(\rho_{i-1}, X_{i-1}). \]

\[V_i = p(\rho_i + (1 - \rho_i)X_i) - \frac{X_i^2}{2} + \beta(1 - \epsilon)((1 - X_i)V_0 - X_iV_{i+1}). \]

\[X_i = \beta(1 - \epsilon)(V_{i+1} - V_0). \]

- If we assume eventually \(\rho_i, X_i, \) and \(V_i \) converge (they do), then if you truncate \(i \), becomes \(N \) (non-linear) equations and \(N \) unknowns.
A Suggestion which selects “Ratchet” strategy as the unique Markov Perfect Equilibrium:

- A fixed point equation for ρ:

 $$\rho = B(\rho, X). \quad (2)$$

- Gives locus of points where if you start at reputation ρ, have NO public signal when one should have happened with probability $1 - X$, then reputation ρ stays same.

- Happens when learning about type is exactly offset by drift toward stationary probability.