Credit Allocation under Economic Stimulus: Evidence from China

Lin William Cong
Chicago Booth

Jacopo Ponticelli
Northwestern Kellogg & CEPR

Xiaoguang Yang
Chinese Academy of Sciences

Haoyu Gao
CUFE

January 2018
Motivation

Allocation of resources across firms in China
Motivation

Allocation of resources across firms in China

- 2000-2008: Boom years
Motivation

Allocation of resources across firms in China

- 2000-2008: Boom years
 - Large “static” misallocation [Hsieh and Klenow, 2009]
 - but movement of capital towards high-productivity firms [Song et. al. 2011]
Motivation

Allocation of resources across firms in China

- 2000-2008: Boom years
 - Large “static” misallocation [Hsieh and Klenow, 2009]
 - but movement of capital towards high-productivity firms [Song et. al. 2011]

- 2009-2010: Major stimulus program by Chinese government
Motivation

Allocation of resources across firms in China

- 2000-2008: Boom years
 - Large “static” misallocation [Hsieh and Klenow, 2009]
 - but movement of capital towards high-productivity firms [Song et. al. 2011]

- 2009-2010: Major stimulus program by Chinese government
 - 4 Tr CNY government spending (12.6% GDP)
Motivation

Allocation of resources across firms in China

- 2000-2008: Boom years
 - Large “static” misallocation [Hsieh and Klenow, 2009]
 - but movement of capital towards high-productivity firms [Song et. al. 2011]

- 2009-2010: Major stimulus program by Chinese government
 - 4 Tr CNY government spending (12.6% GDP)
 - Bank credit expansion policies
Allocation of resources across firms in China

- **2000-2008: Boom years**
 - Large “static” misallocation [Hsieh and Klenow, 2009]
 - but movement of capital towards high-productivity firms [Song et al. 2011]

- **2009-2010: Major stimulus program by Chinese government**
 - 4 Tr CNY government spending (12.6% GDP)
 - Bank credit expansion policies
 - Often praised for avoiding hard landing, unintended consequences
Motivation

Allocation of resources across firms in China

- 2000-2008: Boom years
 - Large “static” misallocation [Hsieh and Klenow, 2009]
 - but movement of capital towards high-productivity firms [Song et. al. 2011]

- 2009-2010: Major stimulus program by Chinese government
 - 4 Tr CNY government spending (12.6% GDP)
 - Bank credit expansion policies
 - Often praised for avoiding hard landing, unintended consequences

→ Scarce direct empirical evidence
Credit Growth During Stimulus

Figure: Capital Flows from Financial System to Real Economy

Source: People's Bank of China - Total Social Financing Dataset
This paper

Study effect of credit supply increase on firm-level outcomes and allocation of credit across firms
This paper

Study effect of credit supply increase on firm-level outcomes and allocation of credit across firms

Data

- Loan-level data from CBRC (19 largest Chinese banks)
- Firm-level data from Manufacturing Survey
This paper

Study effect of credit supply increase on firm-level outcomes and allocation of credit across firms

1 Data
 - Loan-level data from CBRC (19 largest Chinese banks)
 - Firm-level data from Manufacturing Survey

2 Identification
 - Firm-level exposure to credit supply (Bartik instrument)
This paper

Study effect of credit supply increase on firm-level outcomes and allocation of credit across firms

1 Data

- Loan-level data from CBRC (19 largest Chinese banks)
- Firm-level data from Manufacturing Survey

2 Identification

- Firm-level exposure to credit supply (Bartik instrument)
- Credit allocation
 - by firm characteristics: state-connectedness, productivity
 - by period: pre-stimulus, stimulus
This paper

Study effect of credit supply increase on firm-level outcomes and allocation of credit across firms

1. Data
 - Loan-level data from CBRC (19 largest Chinese banks)
 - Firm-level data from Manufacturing Survey

2. Identification
 - Firm-level exposure to credit supply (Bartik instrument)
 - Credit allocation
 - by firm characteristics: state-connectedness, productivity
 - by period: pre-stimulus, stimulus

3. Discussion
 - Discuss/test potential channels driving credit allocation dynamics
Preview of Results

- Average effects
 - Firms with larger increase in credit supply during stimulus
 → larger borrowing (≈ 1), investment (0.22), employment (0.32)
Preview of Results

- **Average effects**
 - Firms with larger increase in credit supply during stimulus
 - \rightarrow larger borrowing (≈ 1), investment (0.22), employment (0.32)

- **Heterogeneous Effects**
 - Effect of credit supply on firm borrowing:
 - stimulus (2009-10): 38% larger for state-owned firms
Preview of Results

- **Average effects**
 - Firms with larger increase in credit supply during stimulus
 \[\text{larger borrowing (} \approx 1\text{), investment (0.22), employment (0.32)} \]

- **Heterogeneous Effects**
 - Effect of credit supply on firm borrowing:
 - stimulus (2009-10): 38% larger for state-owned firms
 - pre-stimulus (pre 2009): 49% larger for private firms
Preview of Results

Average effects

- Firms with larger increase in credit supply during stimulus
 → larger borrowing (≈ 1), investment (0.22), employment (0.32)

Heterogeneous Effects

- Effect of credit supply on firm borrowing:
 - stimulus (2009-10): 38% larger for state-owned firms
 - pre-stimulus (pre 2009): 49% larger for private firms

→ Reversal of previous reallocation process
Preview of Results

- **Average effects**
 - Firms with larger increase in credit supply during stimulus
 \[\rightarrow \text{larger borrowing (} \approx 1\text{), investment (}0.22\text{), employment (}0.32\text{)} \]

- **Heterogeneous Effects**
 - Effect of credit supply on firm borrowing:
 - stimulus (2009-10): 38% larger for state-owned firms
 - pre-stimulus (pre 2009): 49% larger for private firms
 \[\rightarrow \text{Reversal of previous reallocation process} \]

- **Channels**
 - State-ownership connection (banks-firms)
Preview of Results

- **Average effects**
 - Firms with larger increase in credit supply during stimulus
 \[\rightarrow \text{larger borrowing (} \approx 1\text{), investment (0.22), employment (0.32)} \]

- **Heterogeneous Effects**
 - Effect of credit supply on firm borrowing:
 - stimulus (2009-10): 38% larger for state-owned firms
 - pre-stimulus (pre 2009): 49% larger for private firms
 \[\rightarrow \text{Reversal of previous reallocation process} \]

- **Channels**
 1. State-ownership connection (banks-firms)
 2. Implicit bail-out of SOEs
Literature

1. Macroeconomics

2. Misallocation and Growth
 - Dynamic: Song et al. (2011); Buera and Shin (2013); Gopinath et al (2016)

3. China Economy and Credit Boom
 - Local government debt: Huang, Pagano, and Panizza (2016); Bai, Hsieh, and Song (2016); Ambrose, Deng, and Wu (2015); Chen, He, and Liu (2016)

4. State-Owned Enterprises
 - Political view: Stigler (); Shleifer and Vishny (1998); Sapienza (2002)
Structure of the Talk

- Background and Stylized Facts
 - Identification
 - Empirical Results
- Discussion
Background

Structure of the Economic Stimulus Plan

Economic Stimulus

- Fiscal Plan
 - 4Tr CNY

- Credit Plan

Promote LGFV mostly financed with bank credit

Bank Credit Supply

- ↑ lending quotas
- ↓ required reserve ratio
- ↓ benchmark lending rates

Firms
- Agriculture
- Utilities
- Construction
- Manufacturing
- Services

Households

6 / 31
Background

Structure of the Economic Stimulus Plan

Economic Stimulus

Fiscal Plan
4 Tr CNY

Central Gov Exp
1.18 Tr CNY

Local Gov Exp
2.82 Tr CNY

Credit Plan

Promote LGFV mostly financed with bank credit
Background

Structure of the Economic Stimulus Plan

Economic Stimulus

Fiscal Plan
4Tr CNY

Central Gov Exp
1.18 Tr CNY

Local Gov Exp
2.82 Tr CNY

Credit Plan

Promote LGFV
mostly financed
with bank credit
Background
Structure of the Economic Stimulus Plan

Economic Stimulus

Fiscal Plan
4Tr CNY

Central Gov Exp
1.18 Tr CNY

Local Gov Exp
2.82 Tr CNY

Credit Plan

Promote LGFV
mostly financed
with bank credit

Utilities,
Construction
Background

Structure of the Economic Stimulus Plan

Economic Stimulus

Fiscal Plan
4 Tr CNY

Central Gov Exp
1.18 Tr CNY

Local Gov Exp
2.82 Tr CNY

Promote LGFV
mostly financed
with bank credit

Credit Plan

Bank Credit Supply
↑ lending quotas
↓ required reserve ratio
↓ benchmark lending rates

Utilities,
Construction
Background

Structure of the Economic Stimulus Plan

Economic Stimulus

Fiscal Plan
4Tr CNY

Central Gov Exp
1.18 Tr CNY

Local Gov Exp
2.82 Tr CNY

Credit Plan

Bank Credit Supply

↑ lending quotas
↓ required reserve ratio
↓ benchmark lending rates

Promote LGFV
mostly financed
with bank credit

Utilities,
Construction
Background

Structure of the Economic Stimulus Plan

Economic Stimulus

Fiscal Plan
4Tr CNY

Central Gov Exp
1.18 Tr CNY

Local Gov Exp
2.82 Tr CNY

Promote LGFV
mostly financed
with bank credit

Credit Plan

Bank Credit Supply
↑ lending quotas
↓ required reserve ratio
↓ benchmark lending rates

Households

Firms

Agriculture

Utilities, Construction

Manufacturing

Services

Source: Chen, He and Liu (2017)
Changes in Banking Regulation

- Reduction in Required Reserve Ratios (RRR = reserves/deposits)
Changes in Banking Regulation

- Reduction in Required Reserve Ratios (RRR = reserves/deposits)

\[\downarrow \text{RRR Large Banks: } 17.5 \rightarrow 15.5\% \]
\[\downarrow \text{RRR Small Banks: } 17.5 \rightarrow 13.5\% \]

Notes: Shaded areas indicate stimulus years (2008:Q4 to 2010:Q4). Data on actual reserve ratios is from WIND and comes aggregated by bank category.
Data Description

1. CBRC loan-level database (2006-2013)
 - Source: China Banking Regulatory Commission
1. CBRC loan-level database (2006-2013)
 - Source: China Banking Regulatory Commission
 - 19 largest banks (80% bank loans)
1. CBRC loan-level database (2006-2013)
 - Source: China Banking Regulatory Commission
 - 19 largest banks (80% bank loans)
 - Universe of loans to firms with annual outstanding balance $\geq 50m$ CNY
Data Description

1. CBRC loan-level database (2006-2013)
 - Source: China Banking Regulatory Commission
 - 19 largest banks (80% bank loans)
 - Universe of loans to firms with annual outstanding balance \geq 50m CNY
 - Variables: loan balance, maturity, repayment, bank and firm identifiers
Banks in the CBRC Loan-level Dataset

<table>
<thead>
<tr>
<th>Bank Name</th>
<th>Bank Type</th>
<th>Lending Share in 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICBC</td>
<td>State-Owned Commercial Bank</td>
<td>18.19%</td>
</tr>
<tr>
<td>China Development Bank</td>
<td>Policy Bank</td>
<td>16.38%</td>
</tr>
<tr>
<td>China Construction Bank</td>
<td>State-Owned Commercial Bank</td>
<td>15.82%</td>
</tr>
<tr>
<td>Agricultural Bank</td>
<td>State-Owned Commercial Bank</td>
<td>13.03%</td>
</tr>
<tr>
<td>Bank of China</td>
<td>State-Owned Commercial Bank</td>
<td>10.44%</td>
</tr>
<tr>
<td>Communication Bank</td>
<td>State-Owned Commercial Bank</td>
<td>5.52%</td>
</tr>
<tr>
<td>Min Sheng Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>2.95%</td>
</tr>
<tr>
<td>Merchants Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>2.95%</td>
</tr>
<tr>
<td>China CITIC Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>2.72%</td>
</tr>
<tr>
<td>Pudong Development Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>2.62%</td>
</tr>
<tr>
<td>Export Import Bank</td>
<td>Policy Bank</td>
<td>2.08%</td>
</tr>
<tr>
<td>Ever Bright Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>2.05%</td>
</tr>
<tr>
<td>Industrial Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>1.68%</td>
</tr>
<tr>
<td>Hua Xia Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>1.45%</td>
</tr>
<tr>
<td>Guang Fa Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>0.81%</td>
</tr>
<tr>
<td>Ping An Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>0.81%</td>
</tr>
<tr>
<td>Bo Hai Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>0.18%</td>
</tr>
<tr>
<td>Ever Growing Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>0.16%</td>
</tr>
<tr>
<td>Zhe Shang Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>0.15%</td>
</tr>
</tbody>
</table>

Source: CBRC, Bankscope. All banks are currently publicly traded except: Guang Fa Bank, Ever Growing Bank, Bohai Bank and the two policy banks.
Credit Growth across Sectors

Figure: Change in Bank Lending to Firms - by Sector, Quarterly Data

Notes: Source: China Banking Regulatory Commission. To produce this graph we first sum across firms the monetary value of their outstanding loan balance at the end of each quarter. Then we take a quarter to quarter difference of the sum.
Credit Growth across Regions

Figure: Change in Bank Lending to Firms during Stimulus - by City/Prefecture-city

Notes: For each city c, we plot $\Delta L_c = \left(\frac{1}{2} \sum_{t=09}^{T=10} L_{ct} - \frac{1}{2} \sum_{t=07}^{T=08} L_{ct} \right) / \left(\frac{1}{2} \sum_{t=07}^{T=08} L_{ct} \right)$.

- Source: China’s National Bureau of Statistics
- Manufacturing firms with revenues: $\geq 5m$ CNY (20m after 2010)
- Variables: employment, investment, assets, value added, book value of K
- Share of government ownership (following Hsieh and Song, 2015)

- Source: China’s National Bureau of Statistics
- Manufacturing firms with revenues: ≥ 5m CNY (20m after 2010)
- Variables: employment, investment, assets, value added, book value of K^*
- Share of government ownership (following Hsieh and Song, 2015)

1. + 2. Matched sample:

- 67% of Manufacturing Firms with credit relationship with top-19 bank
- Lending to manufacturing represents 22% total bank lending (2006-2013)
Summary Statistics

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Mean</th>
<th>Median</th>
<th>St.Dev.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: CBRC loan-level data:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$loan_{ibt}$ (million RMB)</td>
<td>163</td>
<td>63</td>
<td>452</td>
<td>177,087</td>
</tr>
<tr>
<td>stimulus years</td>
<td>179</td>
<td>68</td>
<td>474</td>
<td>39,005</td>
</tr>
<tr>
<td>stimulus years, firm-level</td>
<td>554</td>
<td>156</td>
<td>1791</td>
<td>11,067</td>
</tr>
<tr>
<td>$\Delta \log loan_{ibt}$</td>
<td>0.039</td>
<td>0.000</td>
<td>0.433</td>
<td>177,087</td>
</tr>
<tr>
<td>stimulus years</td>
<td>0.033</td>
<td>0.000</td>
<td>0.461</td>
<td>39,005</td>
</tr>
<tr>
<td>stimulus years, firm-level ($\Delta \log loan_{it}$)</td>
<td>0.094</td>
<td>0.048</td>
<td>0.442</td>
<td>11,067</td>
</tr>
<tr>
<td>Panel B: Annual Survey of Industrial firms:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>number of employees</td>
<td>2,144</td>
<td>702</td>
<td>7,405</td>
<td>11,067</td>
</tr>
<tr>
<td>fixed assets (million RMB)</td>
<td>731</td>
<td>121</td>
<td>3,699</td>
<td>11,067</td>
</tr>
<tr>
<td>sales (million RMB)</td>
<td>1,621</td>
<td>421</td>
<td>6,255</td>
<td>11,067</td>
</tr>
<tr>
<td>$StateShare$</td>
<td>0.113</td>
<td>0.000</td>
<td>0.290</td>
<td>11,067</td>
</tr>
<tr>
<td>age (year)</td>
<td>15</td>
<td>11</td>
<td>14</td>
<td>11,067</td>
</tr>
<tr>
<td>exporter dummy</td>
<td>0.449</td>
<td>0.000</td>
<td>0.497</td>
<td>11,067</td>
</tr>
<tr>
<td>public</td>
<td>0.052</td>
<td>0.000</td>
<td>0.222</td>
<td>11,067</td>
</tr>
<tr>
<td>$\Delta \log$ employment</td>
<td>0.027</td>
<td>0.045</td>
<td>0.598</td>
<td>11,067</td>
</tr>
<tr>
<td>$\Delta \log$ fixed assets</td>
<td>-0.272</td>
<td>-0.073</td>
<td>0.669</td>
<td>11,067</td>
</tr>
<tr>
<td>Panel C: independent variables:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \log L_{b-cj,t}$</td>
<td>0.131</td>
<td>0.118</td>
<td>0.113</td>
<td>177,087</td>
</tr>
<tr>
<td>stimulus years</td>
<td>0.231</td>
<td>0.187</td>
<td>0.127</td>
<td>39,005</td>
</tr>
<tr>
<td>$\Delta L_{icj,t}$</td>
<td>0.219</td>
<td>0.198</td>
<td>0.115</td>
<td>11,067</td>
</tr>
</tbody>
</table>
Structure of the Talk

- Background and Stylized Facts
- Identification
- Empirical Results
- Discussion
Identification

- Empirical questions:
 - Effect of bank credit supply on firm borrowing, investment and size
 - Allocation across firms with different ownership, initial productivity

- Main challenge:
 - Isolate changes in firm borrowing that are solely driven by credit supply forces and not by changes in demand/investment opportunities
Empirics
Identification Strategy

- Measure of **firm exposure** to credit supply changes exploits:
 - Heterogeneous increases in lending across banks
 - Pre-existing bank-firm relationships
Empirics
Identification Strategy

- Measure of **firm exposure** to credit supply changes exploits:
 - Heterogeneous increases in lending across banks
 - Pre-existing bank-firm relationships

- **Firm** i exposure [as in Chodorow-Reich (QJE, 2014)]

\[
\Delta L_{icjt} = \sum_{b \in O_i} \omega_{bi,t=0} \times \Delta Loans_{b-cj,t} \tag{1}
\]

- $\omega_{bi,t=0} = \text{initial share of borrowing of firm } i \text{ from bank } b$
- $\Delta Loans_{b-cj,t} = \text{change in total loan balance of bank } b$
 \rightarrow \text{excluding any lending to sector } j \text{ and city } c \text{ where firm } i \text{ operates}
Discussion

Identification Assumptions:

A1) Bank-firm relationships persistent over time
Identification Assumptions:

A1) Bank-firm relationships persistent over time

A2) Cross-sectional variation in bank lending during stimulus:
 - reflects supply forces
 e.g. exposure to changes in bank regulation
Identification Assumptions:

A1) Bank-firm relationships persistent over time

A2) Cross-sectional variation in bank lending during stimulus:
 - reflects supply forces
 e.g. exposure to changes in bank regulation
 - or observable firm characteristics
 e.g. sector, export, location, size, age
Identification Assumptions:

A1) Bank-firm relationships persistent over time

A2) Cross-sectional variation in bank lending during stimulus:
 - reflects supply forces
 e.g. exposure to changes in bank regulation
 - or observable firm characteristics
 e.g. sector, export, location, size, age
 - but ⊥ unobservable firm characteristics affecting their credit demand
Diagnostics of Identification Assumptions

1. (A1) Estimate probability of new loan from pre-existing lender

2. (A2) Estimate loan-level equation with firm \times year FE (Khwaja and Mian 2009)

$$\Delta \log loan_{ibcj} = \alpha + \alpha_{it} + \beta \Delta \log L_{b-cj,t} + \varepsilon_{ibcj}$$

where: i firm, b bank, c city, j sector, t year
(A1) Persistence of Bank-Firm Relationship

<table>
<thead>
<tr>
<th>outcome:</th>
<th>(I(\text{New loan of firm } i \text{ from bank } b)_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I(\text{Lending relationship firm } i\text{-bank } b)_{t-1})</td>
<td>0.949</td>
</tr>
<tr>
<td></td>
<td>([0.001]^{***})</td>
</tr>
<tr>
<td>Year, Bank, Industry, City fe</td>
<td>y</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.807</td>
</tr>
<tr>
<td>Observations</td>
<td>882,580</td>
</tr>
</tbody>
</table>

Notes: The outcome variable is a dummy equal to 1 if firm \(i \) takes a new loan from bank \(b \) at time \(t \). Each observation in the dataset is a potential bank-firm relationship, i.e. for each firm and year, there is an observation for each potential lender. The independent variable is a dummy equal to 1 if firm \(i \) had a pre-existing credit relationship with bank \(b \) at time \(t \) — 1. Standard errors clustered by firm. Significance levels: \(* * * p < 0.01\), \(* * p < 0.05\), \(* p < 0.1\).

- 95% probability new loan from bank with pre-existing relationship
(A2) Bank Lending and Borrowers’ Characteristics

\[\Delta \log \text{loan}_{ibt} = \alpha + \alpha_{it} + \beta \Delta \log L_{b-i,t} + \varepsilon_{ibt} \]

<table>
<thead>
<tr>
<th></th>
<th>all firms</th>
<th>multi-lender</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>(\Delta \log \text{Loan}_{b-i,t})</td>
<td>0.173</td>
<td>0.174</td>
</tr>
<tr>
<td></td>
<td>[0.045]**</td>
<td>[0.045]**</td>
</tr>
<tr>
<td>Year fe</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Industry fe</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>City fe</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Firm characteristics</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Firm (\times) Year fe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-squared</td>
<td>0.012</td>
<td>0.012</td>
</tr>
<tr>
<td>Observations</td>
<td>177,087</td>
<td>177,087</td>
</tr>
</tbody>
</table>

Notes: The unit of observation is a loan. Standard errors clustered at the main lender level. Significance levels: ***, ** p < 0.01, ** p < 0.05, * p < 0.1.

- Similar point estimates when using within-firm variation
Structure of the Talk

- Background and Stylized Facts
- Identification
- **Empirical Results**
- Discussion
Effect of Credit Supply on Firm Borrowing

Average effects

\[\Delta \log y_{icjt} = \alpha_c + \alpha_j + \alpha_t + \beta \Delta \tilde{L}_{icjt} + \gamma X_{i,t-1} + \varepsilon_{icjt} \]

- \(i \) firm, \(j \) sector, \(c \) city, \(t \) year.
- \(\Delta \tilde{L}_{it} \): firm-level exposure to credit supply increases

\[\Delta \tilde{L}_{icjt} = \sum_{b \in O_i} \omega_{bi,t=0} \times \Delta \log Loans_{b-cj,t} \]

- \(X_{i,t-1} \): firm characteristics: size, export status, age, publicly traded status
Average Effects

<table>
<thead>
<tr>
<th>outcome:</th>
<th>$\Delta \log \text{loan}_{it}$ (1)</th>
<th>$\Delta \log K_{it}$ (2)</th>
<th>$\Delta \log L_{it}$ (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \tilde{L}_{ijt}$</td>
<td>1.005 [0.088]**</td>
<td>0.218 [0.107]**</td>
<td>0.318 [0.100]**</td>
</tr>
<tr>
<td>Year FE</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Industry FE</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>City FE</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Firm characteristics</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.094</td>
<td>0.438</td>
<td>0.232</td>
</tr>
<tr>
<td>Observations</td>
<td>11,067</td>
<td>11,067</td>
<td>11,067</td>
</tr>
</tbody>
</table>

Notes: Standard errors clustered at city level. *** $p<0.01$, ** $p<0.05$, * $p<0.1$.

- 1 percent increase in credit supply from pre-existing lenders:
 - \approx 1 percent increase in firm borrowing
 - 0.22 percent increase in fixed capital
 - 0.32 percent increase in employment
\[\Delta \log y_{icjt} = \alpha_c + \alpha_j + \alpha_t + \beta_1 \Delta \tilde{L}_{icjt} \times C_{i,t=0} + \beta_2 \Delta \tilde{L}_{icjt} + \beta_3 C_{i,t=0} \]

\[+ \gamma X_{i,t-1} + \varepsilon_{ijct} \]

- \(i \) firms, \(j \) sector, \(c \) city, \(t \) year.
- \(\Delta \tilde{L}_{icjt} \): firm-level exposure to credit supply increases
- \(C_{i,t=0} \):
 - \textit{StateShare} share of government ownership
 - \(\log APK = \log \frac{VA}{K} \)
State Ownership and Average Product of Capital

- unconditional (left) and conditional on city and industry (right)
<table>
<thead>
<tr>
<th>Model</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \log \text{loan}_{it}$</td>
<td>0.367</td>
<td>0.119</td>
<td>***</td>
</tr>
<tr>
<td>$\Delta \log \text{APK}_{i,t=0}$</td>
<td>0.972</td>
<td>0.086</td>
<td>***</td>
</tr>
<tr>
<td>$\log \text{APK}_{i,t=0}$</td>
<td>-0.080</td>
<td>0.027</td>
<td>***</td>
</tr>
</tbody>
</table>

All columns include Year, Industry and City fixed effects as well as firm characteristics. Standard errors clustered at city level. *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$. 20 / 31
Outcome: \(\Delta \log loan_{it} \)

<table>
<thead>
<tr>
<th>Sample: All Firms</th>
<th>(\log APK_{i,t=0} = \text{low})</th>
<th>(\log APK_{i,t=0} = \text{high})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta L_{ict} \times \text{StateShare}_{i,t=0})</td>
<td>0.367 [0.119]**</td>
<td>0.354 [0.132]**</td>
</tr>
<tr>
<td>(\Delta L_{ict})</td>
<td>0.972 [0.086]**</td>
<td>0.872 [0.106]**</td>
</tr>
<tr>
<td>(\text{StateShare}_{i,t=0})</td>
<td>-0.080 [0.027]**</td>
<td>-0.051 [0.033]</td>
</tr>
</tbody>
</table>

R-squared | 0.095 | 0.139 | 0.107
Observations | 11,067 | 5,531 | 5,510

Sample: \(\text{StateShare}_{i,t=0} = 0 \)

<table>
<thead>
<tr>
<th>Sample: All Firms</th>
<th>(\text{StateShare}_{i,t=0} = 0)</th>
<th>(\text{StateShare}_{i,t=0} > 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta L_{ict} \times \log APK_{i,t=0})</td>
<td>0.972 0.872 1.043</td>
<td>[0.086]** [0.106]** [0.123]**</td>
</tr>
<tr>
<td>(\Delta L_{ict})</td>
<td>-0.080 -0.051 -0.097</td>
<td>[0.027]** [0.033] [0.056]*</td>
</tr>
<tr>
<td>(\log APK_{i,t=0})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-squared | 0.095 | 0.139 | 0.107
Observations | 11,067 | 5,531 | 5,510

All columns include Year, Industry and City fixed effects as well as firm characteristics. Standard errors clustered at city level. *** \(p < 0.01 \), ** \(p < 0.05 \), * \(p < 0.1 \).
<table>
<thead>
<tr>
<th>outcome:</th>
<th>$\Delta \log \text{loan}_{it}$</th>
<th>log $\text{APK}_{i,t=0}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample:</td>
<td>all firms</td>
<td>= low</td>
</tr>
<tr>
<td>$\Delta \widetilde{L}{icjt} \times \text{StateShare}{i,t=0}$</td>
<td>0.367 [0.119][***]</td>
<td>0.354 [0.132][***]</td>
</tr>
<tr>
<td>$\Delta \widetilde{L}_{icjt}$</td>
<td>0.972 [0.086][***]</td>
<td>0.872 [0.106][***]</td>
</tr>
<tr>
<td>$\text{StateShare}_{i,t=0}$</td>
<td>-0.080 [0.027][***]</td>
<td>-0.051 [0.033]</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.095</td>
<td>0.139</td>
</tr>
<tr>
<td>Observations</td>
<td>11,067</td>
<td>5,531</td>
</tr>
</tbody>
</table>

All columns include Year, Industry and City fixed effects as well as firm characteristics. Standard errors clustered at city level. *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$. 20 / 31
<table>
<thead>
<tr>
<th>outcome:</th>
<th>$\Delta \log loan_{it}$</th>
<th>$\Delta \log APK_{i,t=0}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample:</td>
<td>all firms</td>
<td>all firms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta L_{icjt} \times StateShare_{i,t=0}$</td>
<td>0.367</td>
<td>0.354</td>
</tr>
<tr>
<td></td>
<td>[0.119]**</td>
<td>[0.132]**</td>
</tr>
<tr>
<td>ΔL_{icjt}</td>
<td>0.972</td>
<td>0.872</td>
</tr>
<tr>
<td></td>
<td>[0.086]**</td>
<td>[0.106]**</td>
</tr>
<tr>
<td>StateShare$_{i,t=0}$</td>
<td>-0.080</td>
<td>-0.051</td>
</tr>
<tr>
<td></td>
<td>[0.027]**</td>
<td>[0.033]</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.095</td>
<td>0.139</td>
</tr>
<tr>
<td>Observations</td>
<td>11,067</td>
<td>5,531</td>
</tr>
</tbody>
</table>

sample: all firms

$\Delta L_{icjt} \times \log APK_{i,t=0}$	-0.060	-0.058	0.040
	[0.027]**	[0.029]**	
ΔL_{icjt}	0.984	0.960	1.204
	[0.090]**	[0.094]**	
$\log APK_{i,t=0}$	0.047	0.052	0.002
	[0.008]**	[0.008]**	
R-squared	0.099	0.101	
Observations	11,067	9,251	

All columns include Year, Industry and City fixed effects as well as firm characteristics. Standard errors clustered at city level. *** p < 0.01, ** p < 0.05, * p < 0.1.
Discussion

- Effect of credit supply increase on firm borrowing during stimulus
 - 38% larger for fully state-owned than for fully private firms
 → Result holds both within low and high capital productivity firms
 - 8% larger for firms with 1 st.dev. lower initial APK
 → between (private to SOEs) and within effect (among private firms)

- Robustness
 - Exclude input-suppliers to construction and utilities
Allocation Dynamics: All Years

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Sample</th>
<th>Δ log loan_{it}</th>
<th>All firms</th>
<th>log APK_{i,t=0} = low</th>
<th>= high</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \tilde{L}{ict} \times StateShare{i,t=0} \times I(stimulus))</td>
<td></td>
<td></td>
<td></td>
<td>0.874</td>
<td>[0.240]***</td>
</tr>
<tr>
<td>(\Delta \tilde{L}{ict} \times StateShare{i,t=0} \times I(post-stimulus))</td>
<td></td>
<td></td>
<td></td>
<td>0.664</td>
<td>[0.291]**</td>
</tr>
<tr>
<td>(\Delta \tilde{L}{ict} \times StateShare{i,t=0})</td>
<td></td>
<td></td>
<td></td>
<td>-0.493</td>
<td>[0.209]**</td>
</tr>
</tbody>
</table>

R-squared 0.065
Observations 46,568

Notes: All regressions include main effects of the triple interaction; year, industry and city fixed effects; firm characteristics. Standard errors clustered at city level. *** p < 0.01, ** p < 0.05, * p < 0.1.

- Effect of credit supply increase on firm borrowing:
 - pre-stimulus: 49% larger for private firms than SOEs
 - Reversal starting from 2009, extends in post-stimulus period
Allocation Dynamics: All Years

<table>
<thead>
<tr>
<th>outcome:</th>
<th>(\Delta \log \frac{\text{loan}{it}}{\text{APK}{i,t=0}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample:</td>
<td>all firms</td>
</tr>
<tr>
<td></td>
<td>(= \text{low})</td>
</tr>
</tbody>
</table>

\(\Delta L_{icjt} \times \text{StateShare}_{i,t=0} \times I(\text{stimulus}) \)	0.874	0.650	1.152
\(\Delta L_{icjt} \times \text{StateShare}_{i,t=0} \times I(\text{post-stimulus}) \)	0.664	0.438	1.244
\(\Delta L_{icjt} \times \text{StateShare}_{i,t=0} \)	-0.493	-0.246	-0.859

R-squared: 0.065, 0.076, 0.062
Observations: 46,568, 23,280, 23,279

Notes: All regressions include main effects of the triple interaction; year, industry and city fixed effects; firm characteristics. Standard errors clustered at city level. *** \(p < 0.01 \), ** \(p < 0.05 \), * \(p < 0.1 \).

- **Effect of credit supply increase on firm borrowing:**
 - pre-stimulus: 49% larger for private firms than SOEs
 - Reversal starting from 2009, extends in post-stimulus period
 - effect holds when conditioning on capital productivity
Allocation Dynamics: All Years

<table>
<thead>
<tr>
<th>Outcome:</th>
<th>(\Delta \log \text{loan}_{it})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample:</td>
<td>(\text{all firms})</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\Delta \tilde{L}_{icjt} \times \log APK_{i,t=0} \times I(\text{stimulus}) & \quad -0.149 \\
\Delta \tilde{L}_{icjt} \times \log APK_{i,t=0} \times I(\text{post – stimulus}) & \quad -0.054 \\
\Delta \tilde{L}_{icjt} \times \log APK_{i,t=0} & \quad 0.093
\end{align*}
\]

- R-squared: 0.069
- Observations: 46,568

Notes: All regressions include main effects of the triple interaction; year, industry and city fixed effects; firm characteristics. Standard errors clustered at city level. *** \(p < 0.01 \), ** \(p < 0.05 \), * \(p < 0.1 \).

- **Effect of credit supply increase on firm borrowing:**
 - Pre-stimulus: larger for *high* capital productivity firms
 - Reversal starting from 2009
Allocation Dynamics: All Years

<table>
<thead>
<tr>
<th>outcome:</th>
<th>$\Delta \log \text{loan}_{it}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample:</td>
<td>all firms</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>all firms</th>
<th>$\text{StateShare}_{i,t=0}= 0$</th>
<th>$\text{StateShare}_{i,t=0} > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta L_{icjt} \times \log APK_{i,t=0} \times I(stimulus)$</td>
<td>-0.149</td>
<td>-0.162</td>
<td>0.031</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.048]***</td>
<td>[0.057]***</td>
<td>[0.143]</td>
<td></td>
</tr>
<tr>
<td>$\Delta L_{icjt} \times \log APK_{i,t=0} \times I(post – stimulus)$</td>
<td>-0.054</td>
<td>-0.055</td>
<td>0.203</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.061]</td>
<td>[0.069]</td>
<td>[0.177]</td>
<td></td>
</tr>
<tr>
<td>$\Delta L_{icjt} \times \log APK_{i,t=0}$</td>
<td>0.093</td>
<td>0.107</td>
<td>-0.013</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.044]**</td>
<td>[0.053]**</td>
<td>[0.119]</td>
<td></td>
</tr>
</tbody>
</table>

R-squared | 0.069 | 0.070 | 0.120 |
Observations | 46,568 | 39,131 | 7,428 |

Notes: All regressions include main effects of the triple interaction; year, industry and city fixed effects; firm characteristics. Standard errors clustered at city level. *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$.

- Effect of credit supply increase on firm borrowing:
 - pre-stimulus: larger for *high* capital productivity firms
 - Reversal starting from 2009
 - capital productivity not a driver of credit allocation within SOEs
Structure of the Talk

- Background and Stylized Facts
- Identification
- Empirical Results
- Discussion
Discussion of Allocation Dynamics

Pre-stimulus years:
- Results consistent with capital reallocation from low to high-productivity firms in China during the 2000s (e.g. Song et al. AER 2011)
Discussion of Allocation Dynamics

Pre-stimulus years:
- Results consistent with capital reallocation from low to high-productivity firms in China during the 2000s (e.g. Song et al. AER 2011)

Stimulus years:
- what can explain reversal of previous reallocation process?
Discussion of Allocation Dynamics

- Pre-stimulus years:
 - Results consistent with capital reallocation from low to high-productivity firms in China during the 2000s (e.g. Song et al. AER 2011)

- Stimulus years:
 - what can explain reversal of previous reallocation process?
 - State-ownership connection between banks and firms
Discussion of Allocation Dynamics

- **Pre-stimulus years:**
 - Results consistent with capital reallocation from low to high-productivity firms in China during the 2000s (e.g. Song et al. AER 2011)

- **Stimulus years:**
 - what can explain reversal of previous reallocation process?
 - State-ownership connection between banks and firms
 - Implicit government bail-out of SOEs becoming more important during “recession”
State-ownership connection

Relies on two empirically testable arguments:
State-ownership connection

Relies on two empirically testable arguments:

1. State-Owned Banks might have a preferred relationship with SOEs
 - Plausible. Although scarce direct empirical evidence for China.
State-ownership connection

Relies on two empirically testable arguments:

1. **State-Owned Banks might have a preferred relationship with SOEs**
 - Plausible. Although scarce direct empirical evidence for China.

2. **State-owned banks might respond more to government credit plan**
 - Direct government influence
 - Career incentives of top-management
State-ownership connection

Relies on two empirically testable arguments:

1. State-Owned Banks might have a preferred relationship with SOEs
 - Plausible. Although scarce direct empirical evidence for China.

2. State-owned banks might respond more to government credit plan
 - Direct government influence
 - Career incentives of top-management

→ “Mechanically” more of new credit directed to SOEs
State-ownership connection, cont.

First, re-construct ownership structure of 19 largest Chinese banks

<table>
<thead>
<tr>
<th>Bank Name</th>
<th>Bank Type</th>
<th>Gov. Ownership in 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICBC</td>
<td>State-Owned Commercial Bank</td>
<td>75.10%</td>
</tr>
<tr>
<td>China Construction Bank</td>
<td>State-Owned Commercial Bank</td>
<td>58.56%</td>
</tr>
<tr>
<td>Agricultural Bank</td>
<td>State-Owned Commercial Bank</td>
<td>100.00%</td>
</tr>
<tr>
<td>Bank of China</td>
<td>State-Owned Commercial Bank</td>
<td>70.82%</td>
</tr>
<tr>
<td>China Development Bank</td>
<td>Policy Bank</td>
<td>100.00%</td>
</tr>
<tr>
<td>Communication Bank</td>
<td>State-Owned Commercial Bank</td>
<td>32.54%</td>
</tr>
<tr>
<td>Merchants Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>32.63%</td>
</tr>
<tr>
<td>Pudong Development Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>39.74%</td>
</tr>
<tr>
<td>China CITIC Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>63.28%</td>
</tr>
<tr>
<td>Min Sheng Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>12.38%</td>
</tr>
<tr>
<td>Industrial Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>29.92%</td>
</tr>
<tr>
<td>Ever Bright Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>88.30%</td>
</tr>
<tr>
<td>Hua Xia Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>34.41%</td>
</tr>
<tr>
<td>Export Import Bank</td>
<td>Policy Bank</td>
<td>100.00%</td>
</tr>
<tr>
<td>Guang Fa Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>65.78%</td>
</tr>
<tr>
<td>Ping An Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>0.00%</td>
</tr>
<tr>
<td>Ever Growing Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>19.23%</td>
</tr>
<tr>
<td>Zhe Shang Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>14.92%</td>
</tr>
<tr>
<td>Bo Hai Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>62.01%</td>
</tr>
</tbody>
</table>

Source: CBRC, Author’s calculations from Banks’ Annual Reports.
First, re-construct ownership structure of 19 largest Chinese banks

<table>
<thead>
<tr>
<th>Bank Name</th>
<th>Bank Type</th>
<th>Gov. Ownership in 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICBC</td>
<td>State-Owned Commercial Bank</td>
<td>75.10%</td>
</tr>
<tr>
<td>China Construction Bank</td>
<td>State-Owned Commercial Bank</td>
<td>58.56%</td>
</tr>
<tr>
<td>Agricultural Bank</td>
<td>State-Owned Commercial Bank</td>
<td>100.00%</td>
</tr>
<tr>
<td>Bank of China</td>
<td>State-Owned Commercial Bank</td>
<td>70.82%</td>
</tr>
<tr>
<td>China Development Bank</td>
<td>Policy Bank</td>
<td>100.00%</td>
</tr>
<tr>
<td>Communication Bank</td>
<td>State-Owned Commercial Bank</td>
<td>32.54%</td>
</tr>
<tr>
<td>Merchants Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>32.63%</td>
</tr>
<tr>
<td>Pudong Development Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>39.74%</td>
</tr>
<tr>
<td>China CITIC Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>63.28%</td>
</tr>
<tr>
<td>Min Sheng Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>12.38%</td>
</tr>
<tr>
<td>Industrial Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>29.92%</td>
</tr>
<tr>
<td>Ever Bright Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>88.30%</td>
</tr>
<tr>
<td>Hua Xia Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>34.41%</td>
</tr>
<tr>
<td>Export Import Bank</td>
<td>Policy Bank</td>
<td>100.00%</td>
</tr>
<tr>
<td>Guang Fa Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>65.78%</td>
</tr>
<tr>
<td>Ping An Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>0.00%</td>
</tr>
<tr>
<td>Ever Growing Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>19.23%</td>
</tr>
<tr>
<td>Zhe Shang Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>14.92%</td>
</tr>
<tr>
<td>Bo Hai Bank</td>
<td>National Joint-Equity Commercial Bank</td>
<td>62.01%</td>
</tr>
</tbody>
</table>

Source: CBRC, Author's calculations from Banks’ Annual Reports.
State-ownership connection, cont.

Table: Top-10 Shareholders of China Everbright Bank Co., Ltd in 2008

<table>
<thead>
<tr>
<th>Rank</th>
<th>Shareholder</th>
<th>Shareholder type</th>
<th>Ownership</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Central Huijin Investment Ltd.</td>
<td>Gov fund</td>
<td>70.88%</td>
</tr>
<tr>
<td>2</td>
<td>China Everbright Group</td>
<td>Gov fund</td>
<td>7.59%</td>
</tr>
<tr>
<td>3</td>
<td>China Everbright Limited</td>
<td>Gov fund</td>
<td>6.23%</td>
</tr>
<tr>
<td>4</td>
<td>Hongta Tobacco Group Company Limited</td>
<td>SOE</td>
<td>1.35%</td>
</tr>
<tr>
<td>5</td>
<td>Zhejiang Southeast Electric Power Company Limited</td>
<td>SOE</td>
<td>0.62%</td>
</tr>
<tr>
<td>6</td>
<td>Haixin Iron & Steel Group Co., Ltd.</td>
<td>Private Corp.</td>
<td>0.59%</td>
</tr>
<tr>
<td>7</td>
<td>China Export & Credit Insurance Corporation</td>
<td>SOE</td>
<td>0.53%</td>
</tr>
<tr>
<td>8</td>
<td>Qingdao Guoxin Industry Corporation</td>
<td>Local Gov Fund</td>
<td>0.39%</td>
</tr>
<tr>
<td>9</td>
<td>Shanxi International Electricity Group Company Limited</td>
<td>SOE</td>
<td>0.37%</td>
</tr>
<tr>
<td>10</td>
<td>Hongyun honghe Tobacco Group Company Limited</td>
<td>SOE</td>
<td>0.34%</td>
</tr>
</tbody>
</table>

Source: Annual Reports.

State-Ownership: Central Gov Funds + Local Gov Funds + SOEs
Do SOBs lend relatively more to SOEs than private firms?
Do SOBs respond more than private banks to credit stimulus?
Implicit bail-out of SOEs

- Government might bail out SOEs if close to financial distress
- Lenders favor SOEs *more* when probability of financial distress is higher

Anecdotal evidence:
- China Eastern (SOE) and East Star (Private) Airlines at risk of financial distress in 2009
- Government injected 7 billion CNY into China Eastern through SASAC
- East Star Airline liquidated in August 2009
Implicit bail-out of SOEs

- Government might bail out SOEs if close to financial distress
- Lenders favor SOEs *more* when probability of financial distress is higher

Anecdotal evidence:

- China Eastern (SOE) and East Star (Private) Airlines at risk of financial distress in 2009

![Images of China Eastern and East Star Airlines]
Implicit bail-out of SOEs

- Government might bail out SOEs if close to financial distress
- Lenders favor SOEs *more* when probability of financial distress is higher

Anecdotal evidence:

- China Eastern (SOE) and East Star (Private) Airlines at risk of financial distress in 2009
- Government injected 7 billion CNY into China Eastern through SASAC
Implicit bail-out of SOEs

- Government might bail out SOEs if close to financial distress
- Lenders favor SOEs *more* when probability of financial distress is higher

Anecdotal evidence:

- China Eastern (SOE) and East Star (Private) Airlines at risk of financial distress in 2009
- Government injected 7 billion CNY into China Eastern through SASAC
- East Star Airline liquidated in August 2009
Ex-post Loan Performance

Panel A outcomes:

<table>
<thead>
<tr>
<th>Formula</th>
<th>(\Delta \log K_{it})</th>
<th>(\Delta \log L_{it})</th>
<th>(NPL_{it})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \widetilde{L}{icjt} \times \text{StateShare}{i,t=0} \times I(stimulus))</td>
<td>-0.282</td>
<td>0.760</td>
<td>-0.110</td>
</tr>
<tr>
<td></td>
<td>[0.256]</td>
<td>[0.310]**</td>
<td>[0.037]*****</td>
</tr>
<tr>
<td>(\Delta \widetilde{L}{icjt} \times \text{StateShare}{i,t=0} \times I(post - stimulus))</td>
<td>-0.264</td>
<td>-0.130</td>
<td>-0.067</td>
</tr>
<tr>
<td></td>
<td>[0.267]</td>
<td>[0.379]</td>
<td>[0.034]*</td>
</tr>
<tr>
<td>(\Delta \widetilde{L}{icjt} \times \text{StateShare}{i,t=0})</td>
<td>0.156</td>
<td>-0.031</td>
<td>0.086</td>
</tr>
<tr>
<td></td>
<td>[0.182]</td>
<td>[0.151]</td>
<td>[0.031]*****</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.383</td>
<td>0.044</td>
<td>0.070</td>
</tr>
<tr>
<td>Observations</td>
<td>46,568</td>
<td>46,568</td>
<td>42,974</td>
</tr>
</tbody>
</table>

Notes: \(NPL_{it} \): value-weighted share of loans originated in year \(t \) to firm \(i \) which are eventually non-performing (90 days or more delinquent). Standard errors are clustered at city level. Significance levels: *** \(p<0.01 \), ** \(p<0.05 \), * \(p<0.1 \).

- Effect of credit supply increase on ex-post non-performing loans:
 - pre-stimulus: loans to SOEs had larger probability of default
 - Gap closes from 2009
 - consistent with government intervention to prevent SOE financial distress
This paper uses loan-level and firm-level data from China to document:

- SOEs experienced larger bank credit growth than private firms
- Reversal of trend of reallocation observed during pre-stimulus years
- Within private firms, less productive (more connected?) ones experience larger credit growth

Discussion and empirical test of potential mechanisms:

- SOB did not respond more than private banks to stimulus policies
- Implicit bail out of SOEs might matter more in bad times

Informs debate on consequences of China stimulus plan.
- broader impact on the economy besides facilitating off-balance-sheet borrowing by local governments
Conclusions

This paper uses loan-level and firm-level data from China to document:
- SOEs experienced larger bank credit growth than private firms
- Reversal of trend of reallocation observed during pre-stimulus years
- Within private firms, less productive (more connected?) ones experience larger credit growth

Discussion and empirical test of potential mechanisms:
- SOB did not respond more than private banks to stimulus policies
- Implicit bail out of SOEs might matter more in bad times
Conclusions

This paper uses loan-level and firm-level data from China to document:
- SOEs experienced larger bank credit growth than private firms
- Reversal of trend of reallocation observed during pre-stimulus years
- Within private firms, less productive (more connected?) ones experience larger credit growth

Discussion and empirical test of potential mechanisms:
- SOB did not respond more than private banks to stimulus policies
- Implicit bail out of SOEs might matter more in bad times

Informs debate on consequences of China stimulus plan.
- broader impact on the economy besides facilitating off-balance-sheet borrowing by local governments
Thank you!
Appendix. SOEs and Private Firms: within industry and city

2007 (pre-stimulus)

Epanechnikov density

log(APK)

SOEs
Private Firms