Social Insurance, Information Revelation and Lack of Commitment

Mikhail Golosov Luigi Iovino

Conference in honor of Robert E. Lucas
How to design the optimal social insurance system?

- Modern public finance approach builds on work of Atkeson-Lucas, Green, Phelan-Townsend...
- Standard approach: benevolent social planner (government) with full commitment
- General feature: the more information the government knows about agents, the better outcomes it achieves

More information is always better!
How to design the optimal social insurance system?

- A major concern: what if government cannot commit to insurance scheme?
 - more information now increases incentive to re-optimize
- How to design of social insurance when policymaker lacks commitment?
This paper

- A version of Atkeson-Lucas (1992) set up
 - agents receive privately observed idiosyncratic shocks
 - transmit information about those shocks to the gov’t
 - benevolent gov’t provides consumption allocations
- Key friction: the government cannot commit
 - we study Pareto frontier of PBEs
Main results

- **Recursive formulation**: all past info can be summarized with continuation utility v
 - generalizes Atkeson-Lucas
 - much harder to obtain without commitment
- **Key object**: complementarity between v and information
 - does knowing more about high v agents saves more or less resources than knowing more about low v agents?
- **Efficient information revelation**: agents with higher v reveal more precise info about their shock
 - positive complementarity
- Insurance often rationed: provided with prob < 1
Plan

1. Simple 2 period model
2. Dynamic model with iid shocks
Simplified model

- Continuum of agents with preferences
 \[\theta \frac{c_1^{1-\rho}}{1-\rho} + \frac{c_2^{1-\rho}}{1-\rho} \]

- \(\theta \) is a privately observed shock \(\theta \in \Theta \)
- 1 unit of per capita endowment in each period
- Each agent is a member of a group \(i = 1, \ldots, I \) for some \(I \geq 1 \)
 - group \(i \) has measure \(\psi_i \) of agents
Politics

• Insurance is provided by a benevolent Utilitarian politician who lacks commitment

• Game has 3 stages
 1. Politician makes promises how to allocate consumption
 2. Agents report information to the politician
 3. Politician can break promise and re-optimize at a cost $\gamma > 0$

• We focus on the Pareto frontier of the set of PBE
 • strategies that maximize weighted lifetime utility of each group
 • corresponds closely to infinitely repeated game
 • probabilistic voting: groups that care more about economic platform get higher weight in election politics
Politics formally

- Variable: $u = \frac{c^{1-\rho}}{1-\rho}$, $C(u) = \left[\left((1-\rho)u\right)\right]^{1/(1-\rho)}$
- Message space M

Game

1. Politician's promises $u_{i,t}^{pr} : M \rightarrow \mathbb{R}$
2. Agents report: $\sigma_i : \Theta \rightarrow \Delta(M)$
 - σ^{in} is fully informative if can invert m to θ
 - σ^{un} is uninformative if agents babble
3. Final allocations: $u_{i,t} : M \rightarrow \mathbb{R}$.
 - feasibility
 - cost paid if $u_{i,t} - u_{i,t}^{pr} \neq 0$ for a positive measure of agents
Solve model backward

- Best allocation for politician \textbf{after} agents play \{σ_i\}:
 \[
 \max_{\{u_i\}} \sum_{i=1}^{l} \psi_i \mathbb{E}_{σ_i} [θu_{i,1} + u_{i,2}]
 \]
 s.t. feasibility

- For given \(λ^w \) define
 \[
 \mathcal{W} (σ) \equiv \max_u \mathbb{E}_σ [θu - λ^w C (u)]
 \]
Pareto frontier of PBEs

Proposition: each point on the Pareto frontier $v = (v_1, ..., v_I)$ associated with multipliers $\hat{\beta}, \chi, \lambda^w$ such that optimal strategies solve

$$\min \sum_i \psi_i \{ \mathbb{E}_{\sigma_i} [C(u_{i,1}) + \hat{\beta} C(u_{i,2})] + \chi W(\sigma_i) \}$$

subject to

$$\mathbb{E}_{\sigma_i} [\theta u_{i,1} + u_{i,2}] \geq \mathbb{E}_{\sigma'} [\theta u_{i,1} + u_{i,2}] \text{ for all } i, \sigma'$$

$$\mathbb{E}_{\sigma_i} [\theta u_{i,1} + u_{i,2}] = v_i \text{ for all } i$$
Infinite cost of deviation

- Suppose cost of breaking promises is infinite $\implies \chi = 0$
- Generalized Atkeson-Lucas:

$$\kappa (\nu, \sigma) \equiv \min_{u_1, u_2, \sigma} \mathbb{E}_{\sigma_i} [C(u_1) + \hat{\beta} C(u_2)]$$

subject to

$$\mathbb{E}_{\sigma} [\theta u_1 + u_2] \geq \mathbb{E}_{\sigma'} [\theta u_1 + u_2] \text{ for all } \sigma'$$

$$\mathbb{E}_{\sigma} [\theta u_1 + u_2] = \nu$$

- Optimal reporting strategy

$$\min_{\sigma} \kappa (\nu, \sigma)$$
Order reporting strategies

- CES preferences: \(\kappa (v, \sigma) = d(\sigma) C(v) \)
- Define *informativeness* as \(\sigma'' \geq \sigma' \) iff \(d(\sigma'') \leq d(\sigma') \)
 - completes Blackwell's informativeness
- Complementarity of informativeness and utility:

\[
\sigma'' \geq \sigma' \implies \frac{d}{dv} \left[\kappa (v, \sigma') - \kappa (v, \sigma'') \right] \geq 0
\]
How do costs depend on info?
Finite cost of deviation

- Suppose cost of breaking promises is not too high $\Rightarrow \chi > 0$
- Optimal reporting strategy
 \[\min_{\sigma} \kappa (v, \sigma) + \chi W (\sigma) \]
- Trade off: better information decreases cost of insurance but increases incentives to deviate
 \[
 \kappa (v, \sigma^{in}) \leq \kappa (v, \sigma) \leq \kappa (v, \sigma^{un}) \\
 W (\sigma^{in}) \geq W (\sigma) \geq W (\sigma^{un})
 \]
Trade off

\[\kappa(v, \sigma^{in}) + \chi W(\sigma^{in}) \]

\[\kappa(v, \sigma) + \chi W(\sigma) \]

\[\kappa(v, \sigma^{un}) + \chi W(\sigma^{un}) \]
Optimal info
Optimal info revelation

Theorem

If $v_i \geq v_j$ then $\sigma_i^* \geq \sigma_j^*$.

Key force: complementarity between informativeness and promised utility

Same result holds if agents and gov’t can use a mediator for communication a-la Myerson
Optimal info without public randomization
Optimal info with public randomization
Rationing

- Conditioning strategies on sunspot improves welfare
- **Proposition**: Suppose $\rho = 1$ and strategies can depend on sunspot. Then agents play only σ^{in} and σ^{un}

- Interpretation: rationing of insurance
 - gov't provides second-best insurance access to which is rationed
 - rationing is non-trivial as long as Y is not too high
 - holds even with $I = 1$
Full Model
Model

- Preferences
 \[\sum_{t=0}^{\infty} \beta^t \theta_t U(c_t) \]

- \(\theta \in \Theta \) is the taste shock
 - \(\Theta \) is finite
 - \(\theta \) is iid, \(\pi(\theta) \) is probability of \(\theta \)

- Total endowment in each period is 1
- Each individual belongs to a family \(v \) from distribution \(\psi \)
Timing of the game

- Agents observe their types θ_t and report $m_t \in M$
- Government allocates utility u_t to agents as a function of history of reports, sunspots, and initial promise v
Equilibrium

- **Perfect Bayesian Equilibrium**: agents and government play their best responses after all histories, allocations are feasible, government’s beliefs satisfy Bayes rule.

- **Best PBE**: maximizes the sum of the utility of all the agents subject to delivering at least v to agent v.

- **Worst PBE**: agents play σ^{un}.
Recursive formulation

- For simplicity: assume ψ is an invariant distribution
 - pins down $\zeta, \hat{\beta}, \lambda^w$
- Recursive problem:

 $$
 \kappa (v, \sigma) = \min_{u, w} \mathbb{E}_{\sigma} \left[\zeta C (u) - \theta u + \hat{\beta} k (w) \right]
 $$

 subject to

 $$
 \mathbb{E}_{\sigma} [\theta u + \beta w] \geq \mathbb{E}_{\sigma'} [\theta u + \beta w] \text{ for all } \sigma'
 $$

 $$
 \mathbb{E}_{\sigma} [\theta u + \beta w] = v
 $$

- Optimal amount of info revelation for given v

 $$
 k (v) = \min_{\sigma} \mathbb{E} [\kappa (v, \sigma) + \chi W (\sigma)]
 $$
Policy functions with two shocks

A: Probability of info revelation
B: Promised utility policy

Shaded area: rationing of insurance
Persistent shocks

- Markov shocks $\pi (\theta | \theta^-)$
- State variables: prior p and vector of promises v

$$v_i = E_\sigma [\theta u + \beta w | \theta_i^-]$$

- Bellman equation

$$k (v, p) = \min_{u, w, \sigma} \sum p_i E_\sigma [\zeta C (u) - \theta u + \hat{\beta} k (w, p') | \theta_i^-] + \chi W (\sigma, p)$$

subject to IC, PK, and Bayes’ rule

- Direct generalization of Fernandes-Phelan
Conclusion

- Social insurance without commitment
 - recursive formulation
 - characterization

- Main insight: more information is revealed by agents who accumulated higher promised utility
 - had more "good" shocks in the past

- Endogenous lower bound on promised utility
 no provision of incentives for low v