Norms, Incentives and Information in Income Insurance

by

Assar Lindbeck and Mats Persson,
Institute for International Economic Studies,
Stockholm University
\[u(1 - p) + \theta \quad \text{when working} \]
\[u(b) \quad \text{when living on benefits} \]
\[u(1 - p) + \theta \quad \text{when working} \]
\[u(b) \quad \text{when living on benefits} \]

\[\theta^* = u(b) - u(1 - p) \]
\[u(1 - p) + \theta \quad \text{when working} \]
\[u(b) \quad \text{when living on benefits} \]

\[\theta^* = u(b) - u(1 - p) \]

\[[1 - F(\theta^*)] \cdot p = F(\theta^*) \cdot b \]
\[u(1 - p) + \theta \quad \text{when working} \]
\[u(b) \quad \text{when living on benefits} \]

\[\theta^* = u(b) - u(1 - p) \]

\[[1 - F(\theta^*)] \cdot p = F(\theta^*) \cdot b \]

\[[1 - F(\theta^*)] \cdot [u(1 - p) + E(\theta|\theta > \theta^*)] + F(\theta^*) \cdot u(b) \]
1. The optimal contract \((p, b)\) implies less than full insurance.
1. The optimal contract \((p, b)\) implies less than full insurance.

2. Two rationales for insurance: Income smoothing and pain relief.
1. The optimal contract \((p, b)\) implies less than full insurance.

2. Two rationales for insurance: Income smoothing and pain relief.

3. Concavity of consumption utility \(u(\cdot)\) not sufficient for insurance to be warranted.
1. The optimal contract \((p, b)\) implies less than full insurance.

2. Two rationales for insurance: Income smoothing and pain relief.

3. Concavity of consumption utility \(u(\cdot)\) not sufficient for insurance to be warranted.

4. Tax wedge will reduce labor supply also under an optimal insurance contract.
"Naive" norms
"Naive" norms

\[u(1 - p) + \theta \quad \text{when working} \]
\[u(b) - \varphi \quad \text{when living on benefits} \]
"Naive" norms

\[u(1 - p) + \theta \quad \text{when working} \]
\[u(b) - \varphi \quad \text{when living on benefits} \]

\[\theta^* = u(b) - u(1 - p) - \varphi \]
"Naive" norms

\[u(1 - p) + \theta \quad \text{when working} \]
\[u(b) - \varphi \quad \text{when living on benefits} \]

\[\theta^* = u(b) - u(1 - p) - \varphi \]

\[[1 - F(\theta^*)] \cdot p = F(\theta^*) \cdot b \]
"Naive" norms

\[u(1 - p) + \theta \quad \text{when working} \]
\[u(b) - \varphi \quad \text{when living on benefits} \]

\[\theta^* = u(b) - u(1 - p) - \varphi \]

\[[1 - F(\theta^*)] \cdot p = F(\theta^*) \cdot b \]

\[[1 - F(\theta^*)] \cdot \left[u(1 - p) + E(\theta|\theta > \theta^*) \right] + F(\theta^*) \cdot \left[u(b) - \varphi \right] \]
"Naive" norms

\[L = \text{Expected utility with an optimal insurance contract} \]
"Naive" norms

\[L = \text{Expected utility with an optimal insurance contract} \]

\[\frac{dL}{d\phi} < 0 \]
"Naive" norms

\[L = \text{Expected utility with an optimal insurance contract} \]

\[\frac{dL}{d\phi} < 0 \]

Conclusion: "Naive" norms are detrimental for welfare.
"Naive" norms

\[L = \text{Expected utility with an optimal insurance contract} \]

\[\frac{dL}{d\varphi} < 0 \]

Conclusion: "Naive" norms are detrimental for welfare.

How to change the model to make it more realistic? Introduce a third sector.
Blunt Norms

\[u(1 - p) + \theta \]
\[[u(w) + \alpha \theta - \varphi] \]
\[u(w + b) + \alpha \theta - \varphi \]
\[u(b) - \varphi \]
Blunt Norms

\[u(1 - p) + \theta \]
\[\left[u(w) + \alpha \theta - \varphi \right] \]
\[u(w + b) + \alpha \theta - \varphi \]
\[u(b) - \varphi \]

The norm is blunt. Harms not only cheaters: “collateral damage
Blunt Norms

\[u(1 - p) + \theta \]
\[[u(w) + \alpha\theta - \varphi] \]
\[u(w + b) + \alpha\theta - \varphi \]
\[u(b) - \varphi \]

The norm is blunt: harms not only cheaters

\[\frac{dL}{d\varphi} : \text{undetermined sign} \]
Blunt Norms

Numerical simulations:

Utility function CRRA,\n\(\theta \) normally distributed.

\(V \) derive optimum norms for large combinations of \(\alpha \) and \(w \)
Figure 5.2: Distribution of the population on different activities when there is a norm against working outside the regular economy. Baseline case with $\alpha = 0.6$ and $w = 0.3$.
Figure 5.3: The optimal contract \((p, b)\) for different values of \(\varphi\) when there is a norm against working outside the regular economy. Baseline case with \(\alpha = 0.6\) and \(w = 0.3\).
Figure 5.4: Expected utility when there is a norm against working outside the regular economy. Baseline case with $\alpha = 0.6$ and $w = 0.3$.

φ_{opt}
Blunt Norms

Conclusion: A non-zero norm term is optimal for quite a number of parameter configurations...
Blunt Norms

Conclusion: A non-zero norm term is optimal for quite a number of parameter configurations...

... and this holds although the norm is blunt (in the sense of causing "collateral damage").
Blunt Norms

Conclusion: A non-zero norm term is optimal for quite a number of parameter configurations...
... and this holds although the norm is blunt (in the sense of causing "collateral damage").
The optimal norm falls with higher α, and increases with higher w.
A Norm Against Cheating

\[u(1 - p) + \theta \]
\[u(w) + \alpha \theta \]
\[u(w + b) + \alpha \theta - \varphi \]
\[u(b) \]
A Norm Against Cheating

\[u(1 - p) + \theta \]
\[u(w) + \alpha \theta \]
\[u(w + b) + \alpha \theta - \varphi \]
\[u(b) \]

The norm is sharp: harms only cheaters
A Norm Against Cheating

\[u(1 - p) + \theta \]
\[u(w) + \alpha \theta \]
\[u(w + b) + \alpha \theta - \varphi \]
\[u(b) \]

The norm is sharp: harms only cheaters

\[\frac{dL}{d\varphi} : \text{undetermined sign} \]
A Norm Against Cheating

Simulations with large number of combinations of α and w. Norms optimal for more combinations of α and w than in the case of blunt norm.
A Norm Against Cheating

Simulations with large number of combinations of α and w. Norms optimal for more combinations of α and w than in the case of blunt norm.

The distribution on activities looks like in the previous model.
A Norm Against Cheating

Simulations with large number of combinations of α and w. Norms optimal for more combinations of α and w than in the case of blunt norm.

The distribution on activities looks like in the previous model.

The optimal (p, b) vector looks like in the previous model.
A Norm Against Cheating

Simulations with large number of combinations of α and w. Norms optimal for more combinations of α and w than in the case of blunt norm.

The distribution on activities looks like in the previous model.

The optimal (p, b) vector looks like in the previous model.

But expected utility, as a function of the norm term, is different!
The norm is robust!

Figure 6.1: Expected utility when there is a norm against cheating. Baseline case with $\alpha=0.6$ and $w=0.3$.
A Norm Against Cheating

For some combinations of α and w, $\varphi_{opt} > 0$. For others, $\varphi_{opt} = 0$.
A Norm Against Cheating

For some combinations of α and w, $\varphi_{opt} > 0$. For others, $\varphi_{opt} = 0$. In the latter case, some cheating is in fact accepted in welfare maximum.
A Norm Against Cheating

For some combinations of α and w, $\varphi_{opt} > 0$.

For others, $\varphi_{opt} = 0$.

In the latter case, some cheating is in fact accepted in welfare maximum.

A conflict between utility maximization and ethics?
A Norm Against Cheating

For some combinations of α and w, $\varphi_{opt} > 0$.
For others, $\varphi_{opt} = 0$.
In the latter case, some cheating is in fact accepted in welfare maximum.
A conflict between utility maximization and ethics?
Perhaps the conflict is resolved in reality, by distinguishing between different types of home production?
A Norm Against Cheating

Perhaps the conflict is resolved in reality, by distinguishing between different types of home production?
A Norm Against Cheating

Perhaps the conflict is resolved in reality, by distinguishing between different types of home production?
Some activities are allowed to be combined with benefits without being regarded as “cheating”.
A Norm Against Cheating

Perhaps the conflict is resolved in reality, by distinguishing between different types of home production?
Some activities are allowed to be combined with benefits without being regarded as “cheating”. For instance, activities with low α.
A Norm Against Cheating

Perhaps the conflict is resolved in reality, by distinguishing between different types of home production?

Some activities are allowed to be combined with benefits without being regarded as “cheating”. For instance, activities with low α (personal hygiene, cleaning, recreation...)