Tick Size Constraints, High Frequency Trading and Liquidity

Chen Yao
University of Warwick

Mao Ye
University of Illinois at Urbana-Champaign

July 11, 2014
What Are Tick Size Constraints

Standard Walrasian equilibrium

– Continuous price

Reality

– Discrete prices
– SEC regulation prohibits sub-penny pricing

SEC 612 (Minimum Pricing Increment) prohibits stock exchanges from displaying orders in an increment smaller than $0.01 if the quotation, order, or indication of interest is priced equal to or greater than $1.00 per share.
Background

<table>
<thead>
<tr>
<th>Price</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$100.04</td>
<td>Tick Size: minimum price increment (1 cent here)</td>
</tr>
<tr>
<td>$100.03</td>
<td>Relative Tick Size: Tick Size / Price (about 1 bps here)</td>
</tr>
<tr>
<td>$100.02</td>
<td></td>
</tr>
<tr>
<td>$100.01</td>
<td></td>
</tr>
<tr>
<td>$100.00</td>
<td></td>
</tr>
</tbody>
</table>
Spread: Best Ask - Best Bid
(2 cents here)

Proportional Spread: Spread/Price
(about 2 bps here)
Background

Liquidity provision: limit orders waiting for incoming market orders

Dollar Depth: Dollar value of depth on each price
Binding Tick Size Constraints

Average spread sizes in cents for S&P 500 stocks

- 1 cent: 50%
- 2 cents: 33%
- 3 cents: 8%
- 4 cents: 5%
- 5 cents: 2%
- Stocks priced <= $100
Price Floor

Tick size = 1 penny

Price of Liquidity

Supply

Demand

Surplus

Price floor

Quantity of Liquidity
Economic Consequences of Price Floor

Queuing: first come, first served
Example: High-frequency trading
Speed allocates resources
Contribution

Two existing channels (Biais and Foucault, 2014)

– Competition channel
 • Speed allows HFTers to provide better price of liquidity
 • Avoid pick off risk (Hendershott, Jones and Menkveld, 2011)
 • Better management of inventory (Brogaard et al, 2013)

– Information channel
 • Fast access to information (Biais, Foucault and Moinas, 2013)
 • Fast react to public information (Budish, Cramton and Shim, 2013)

This paper: tick size constraints channel

– Non-HFTers provide better price
– Non-informal drivers of HFT
Relative Tick Size: Example

<table>
<thead>
<tr>
<th></th>
<th>Citigroup</th>
<th>HSBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>$3.3</td>
<td>$59</td>
</tr>
<tr>
<td>Relative Tick Size</td>
<td>30 basis points</td>
<td>1.69 basis points</td>
</tr>
</tbody>
</table>

![Bar chart comparing Citigroup and HSBC prices](chart.png)
Example

HFTer willing to quote proportional spread of 30 basis points

Non-HFTer willing to quote proportional spread of 15 basis points
Relative Tick Size: 30 BPS

has **time** priority over
(when they quote at the same price)
Relative Tick Size: 15 BPS

- A is willing to quote at 15 BPS
- B has price priority over
- B is willing to quote at 30 BPS

Bid asks are relative in tick size.
Main Hypothesis

• Larger relative tick size causes more HFT liquidity provision
 – Low priced stocks attract more HFT liquidity providers

• Challenge: endogeneity
 – Omitted variables
 • Fail to control variables correlated with price as well as HFT market making
 – Reverse causality
 • HFT liquidity provision reduces nominal price
Identification Strategy

• Double sorting
 – Nominal share price is exogenous after controlling for market cap (Benartzi, Michaely, Thaler and Weld, 2009)

• Regressions analysis

• Twin ETFs: ETFs tracking the same index

• Diff-in-diff regression of ETFs splits
 – Pilot: ETFs that split/reverse splits
 – Control: ETFs tracking the same index but are not treated
Double sorting

Twin ETFs

Multivariate regression

R

Diff-in-diff regression of ETFs splits
Who Quotes the Best Price?

<table>
<thead>
<tr>
<th>Relative Tick Size</th>
<th>(1) HFT Only</th>
<th>(2) Non-HFT Only</th>
<th>(3) HFT & Non-HFT</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Cap</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large (Low Price)</td>
<td>1.60%</td>
<td>2.50%</td>
<td>95.90%</td>
<td>1.55</td>
</tr>
<tr>
<td>Medium (Medium Price)</td>
<td>11.90%</td>
<td>18.60%</td>
<td>69.60%</td>
<td>1.57</td>
</tr>
<tr>
<td>Small (High Price)</td>
<td>16.80%</td>
<td>37.70%</td>
<td>45.50%</td>
<td>2.25</td>
</tr>
<tr>
<td>Middle Cap</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large (Low Price)</td>
<td>18.00%</td>
<td>15.20%</td>
<td>66.80%</td>
<td>0.84</td>
</tr>
<tr>
<td>Medium (Medium Price)</td>
<td>20.00%</td>
<td>56.60%</td>
<td>23.40%</td>
<td>2.83</td>
</tr>
<tr>
<td>Small (High Price)</td>
<td>20.70%</td>
<td>63.70%</td>
<td>15.70%</td>
<td>3.08</td>
</tr>
<tr>
<td>Small Cap</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large (Low Price)</td>
<td>11.30%</td>
<td>54.70%</td>
<td>34.10%</td>
<td>4.86</td>
</tr>
<tr>
<td>Medium (Medium Price)</td>
<td>20.20%</td>
<td>55.80%</td>
<td>24.00%</td>
<td>2.77</td>
</tr>
<tr>
<td>Small (High Price)</td>
<td>18.60%</td>
<td>70.70%</td>
<td>10.70%</td>
<td>3.8</td>
</tr>
<tr>
<td>Total</td>
<td>15.40%</td>
<td>41.70%</td>
<td>42.90%</td>
<td>2.62</td>
</tr>
</tbody>
</table>
Tick Size Constraints and Volume

Low-priced stocks
- High tick size constraints
- Higher probability that HFTers and non-HFTers will quote same price
- HFTers can establish time priority more easily

Prediction
- Percentage of volume with HFTers as liquidity providers increases in relative tick size
Double sorting

Multivariate regression

Control for observable variables

Twin ETFs

Diff-in-diff regression of ETFs splits
Omitted Variable Bias

Variables correlated with both
 – Nominal prices (relative tick size)
 – HFT market marking

Search for control variables affecting at least one of them
 – Though most of them have been disqualified by Benartzi, Michaely, Thaler and Weld (2009)
Five Literatures on Nominal Prices

Marketability hypothesis
 – lower price appeals to individual investors

Optimal tick size hypothesis
 – firms choose optimal relative tick size through split

Signaling hypothesis
 – Firms use stock splits to signal good news

Catering hypothesis

Low price predicts distress risk
Factors Affecting HFT Market Marking

Probability of informed trading (PIN)
 – Control for information asymmetry

Volatility and turnover
 – Hendershott, Jones, and Menkveld (2011)

Past Returns
HFT Liquidity Provision

<table>
<thead>
<tr>
<th>Dep. Variable</th>
<th>HFTdepth (in percentage)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>tick\text{relative}</td>
<td>0.678***</td>
<td>0.691***</td>
<td>0.674***</td>
<td>0.691***</td>
<td>0.641***</td>
<td>0.677***</td>
<td>0.653***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7.03)</td>
<td>(7.13)</td>
<td>(6.99)</td>
<td>(6.89)</td>
<td>(6.65)</td>
<td>(7.03)</td>
<td>(6.52)</td>
<td></td>
</tr>
<tr>
<td>logmcap</td>
<td>0.038***</td>
<td>0.038***</td>
<td>0.038***</td>
<td>0.032***</td>
<td>0.032***</td>
<td>0.038***</td>
<td>0.023***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(18.50)</td>
<td>(17.12)</td>
<td>(18.41)</td>
<td>(8.18)</td>
<td>(13.11)</td>
<td>(18.32)</td>
<td>(5.54)</td>
<td></td>
</tr>
<tr>
<td>turnover</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.38)</td>
<td>(0.38)</td>
<td>(0.38)</td>
<td>(0.38)</td>
<td>(0.38)</td>
<td>(0.38)</td>
<td>(0.38)</td>
<td></td>
</tr>
<tr>
<td>volatility</td>
<td>-0.496</td>
<td>-0.268</td>
<td>-0.496</td>
<td>-0.268</td>
<td>-0.496</td>
<td>-0.268</td>
<td>-0.496</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-1.27)</td>
<td>(-1.27)</td>
<td>(-1.27)</td>
<td>(-1.27)</td>
<td>(-1.27)</td>
<td>(-1.27)</td>
<td>(-1.27)</td>
<td></td>
</tr>
<tr>
<td>log\text{bv_average}</td>
<td>-0.003*</td>
<td>0.002</td>
<td>-0.003*</td>
<td>0.002</td>
<td>-0.003*</td>
<td>0.002</td>
<td>-0.003*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-1.80)</td>
<td>(1.21)</td>
<td>(-1.80)</td>
<td>(1.21)</td>
<td>(-1.80)</td>
<td>(1.21)</td>
<td>(-1.80)</td>
<td></td>
</tr>
<tr>
<td>idiorisk</td>
<td>-0.290</td>
<td>-0.314</td>
<td>-0.290</td>
<td>-0.314</td>
<td>-0.290</td>
<td>-0.314</td>
<td>-0.290</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-1.48)</td>
<td>(-1.61)</td>
<td>(-1.48)</td>
<td>(-1.61)</td>
<td>(-1.48)</td>
<td>(-1.61)</td>
<td>(-1.48)</td>
<td></td>
</tr>
<tr>
<td>age</td>
<td>0.01***</td>
<td>0.01***</td>
<td>0.01***</td>
<td>0.01***</td>
<td>0.01***</td>
<td>0.01***</td>
<td>0.01***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8.27)</td>
<td>(8.55)</td>
<td>(8.27)</td>
<td>(8.55)</td>
<td>(8.27)</td>
<td>(8.55)</td>
<td>(8.27)</td>
<td></td>
</tr>
<tr>
<td>num\text{Analyst}</td>
<td>-0.00</td>
<td>-0.00</td>
<td>-0.00</td>
<td>-0.00</td>
<td>-0.00</td>
<td>-0.00</td>
<td>-0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-1.11)</td>
<td>(-1.23)</td>
<td>(-1.11)</td>
<td>(-1.23)</td>
<td>(-1.11)</td>
<td>(-1.23)</td>
<td>(-1.11)</td>
<td></td>
</tr>
<tr>
<td>PIN</td>
<td>-0.36***</td>
<td>-0.44***</td>
<td>-0.36***</td>
<td>-0.44***</td>
<td>-0.36***</td>
<td>-0.44***</td>
<td>-0.36***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-4.46)</td>
<td>(-5.44)</td>
<td>(-4.46)</td>
<td>(-5.44)</td>
<td>(-4.46)</td>
<td>(-5.44)</td>
<td>(-4.46)</td>
<td></td>
</tr>
<tr>
<td>past\text{return}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.069</td>
<td>-0.12***</td>
<td>-0.069</td>
<td>-0.12***</td>
<td>-0.069</td>
<td>-0.12***</td>
<td>-0.069</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Const.</td>
<td>(-11.37)</td>
<td>(-10.29)</td>
<td>(-9.72)</td>
<td>(-5.83)</td>
<td>(-6.17)</td>
<td>(-10.96)</td>
<td>(-2.46)</td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td>0.402</td>
<td>0.403</td>
<td>0.403</td>
<td>0.426</td>
<td>0.408</td>
<td>0.403</td>
<td>0.436</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>2268</td>
<td>2268</td>
<td>2268</td>
<td>2268</td>
<td>2268</td>
<td>2268</td>
<td>2268</td>
<td></td>
</tr>
<tr>
<td>Industry*time FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>
Double sorting

Multivariate regression

Twin ETFs

Control for observables and unobservable variables that affects HFT through fundamentals

Diff-in-diff regression of ETFs splits
Twin ETFs

ETFs tracking the same index

- Eg. Both SPY and iShares tracking S&P500
- Different relative tick size

• Regression Specification

 \[y_{i,t,j} = u_{i,t} + \beta \times \text{tick}_{relative} \downarrow i,t,j + \rho \times \log \text{mktcap}_{i,t,j} + \epsilon_{i,t,j} \]

- \(y_{i,t,j} \)
 1. Liquidity (spread and depth)
 2. HFT market making
 - \textit{RunInProcess} (Hasbrouck and Saar (2013))

- \(u_{i,t} \) is the index by time fixed effect

 • Control for the common fundamentals of twin ETFs
Without Tick Size Constraints

Liquidity

– Lower priced ETF: lower nominal spread
– Higher priced ETF: higher nominal spread
– Proportional spread: the same
 • Same cost to trade fixed dollar amount

HFT activity should be the same

– Common fundamentals
Twin ETFs

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qtspd</td>
<td>(in cent)</td>
<td>pQtspd (in bps)</td>
<td>Depth1 (in mn)</td>
<td>RunsInProc (in .1sec)</td>
</tr>
<tr>
<td>tick_{relative}</td>
<td>-23.407***</td>
<td>88.178***</td>
<td>76.215***</td>
<td>36.543***</td>
</tr>
<tr>
<td></td>
<td>(-17.76)</td>
<td>(27.08)</td>
<td>(20.81)</td>
<td>(4.00)</td>
</tr>
<tr>
<td>logmcap</td>
<td>-0.356***</td>
<td>-0.745***</td>
<td>0.243***</td>
<td>3.254***</td>
</tr>
<tr>
<td></td>
<td>(-13.74)</td>
<td>(-13.04)</td>
<td>(10.69)</td>
<td>(7.88)</td>
</tr>
<tr>
<td>Constant</td>
<td>10.05***</td>
<td>17.92***</td>
<td>-5.31***</td>
<td>-74.56***</td>
</tr>
<tr>
<td></td>
<td>(15.02)</td>
<td>(13.19)</td>
<td>(-9.83)</td>
<td>(-7.76)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.914</td>
<td>0.903</td>
<td>0.824</td>
<td>0.560</td>
</tr>
<tr>
<td>N</td>
<td>378</td>
<td>378</td>
<td>378</td>
<td>378</td>
</tr>
<tr>
<td>Index*time FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
Double sorting

Multivariate regression

Twin ETFs splits:

Exogenous shock to relative tick size

Diff-in-diff regression of ETFs splits:
Diff-in-Diff Regression

- Leveraged ETFs
 - ETFs amplifying the return of the underlying index
 - Appear in pairs: Bear and Bull
 - Dow Jones 30
 - UDOW +300%
 - SDOW-300%

- Same issuance price

- Splits/reverse splits after large price divergence
 - Treatment: ETFs split/reverse split
 - Control: ETFs do not split/reverse split
Regression Specification

\[y_{i,t,j} = u_{i,t} + \gamma_{j} + \rho \times D_{i,t,j} + \theta \times return_{i,t,j} + \epsilon_{i,t,j} \]

\(u_{i,t} \) is the index by time fixed effect

\(\gamma_{j} \) is the ETF fixed effect

\(D_{i,t,j} : \) Treatment dummy
 - Treatment group: 1 after splits and 0 before splits
 - Control group: always 0
Without Tick Size Constraints

Splits
- Price ↓
- Normal spread ↓

Reverse splits
- Price ↑
- Normal spread ↑

Proportional spread should not change
- Cost to trade the same dollar amount should not be affected

HFT activity should not change because of fundamentals
Split

<table>
<thead>
<tr>
<th></th>
<th>Qtspd</th>
<th>pQtspd</th>
<th>Depth1</th>
<th>RunsInProc</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(in cent)</td>
<td>(in bps)</td>
<td>(in mn)</td>
<td>(in .1sec)</td>
</tr>
<tr>
<td>Dummy\textsubscript{treatment}</td>
<td>-9.697***</td>
<td>1.007*</td>
<td>0.015</td>
<td>0.350***</td>
</tr>
<tr>
<td></td>
<td>(-16.02)</td>
<td>(1.94)</td>
<td>(1.39)</td>
<td>(3.42)</td>
</tr>
<tr>
<td>return</td>
<td>-8.880**</td>
<td>-6.698**</td>
<td>-0.009</td>
<td>-0.396</td>
</tr>
<tr>
<td></td>
<td>(-2.40)</td>
<td>(-2.11)</td>
<td>(-0.13)</td>
<td>(-0.63)</td>
</tr>
<tr>
<td>Constant</td>
<td>10.062***</td>
<td>14.484***</td>
<td>0.129***</td>
<td>1.856***</td>
</tr>
<tr>
<td></td>
<td>(8.39)</td>
<td>(14.06)</td>
<td>(6.23)</td>
<td>(9.15)</td>
</tr>
<tr>
<td>R(^2)</td>
<td>0.910</td>
<td>0.742</td>
<td>0.915</td>
<td>0.978</td>
</tr>
<tr>
<td>N</td>
<td>607</td>
<td>607</td>
<td>607</td>
<td>607</td>
</tr>
<tr>
<td>Index*time FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>ETF FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
Split

HFT: 😊 Non-HFT: 😞

$100.04 😊😊😊😊

$100.03 😊😊😊😊😊

$100.02 😊😊😊😊😊

$100.01 😊😊😊😊😊

$100.00 😊😊😊😊😊

$50.00

$50.01

$50.02

$50.015
Reverse Split

<table>
<thead>
<tr>
<th></th>
<th>Qtspd (in cent)</th>
<th>pQtspd (in bps)</th>
<th>Depth1 (in mn)</th>
<th>RunsInProc (in .1sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dummy_treatment</td>
<td>1.175* (8.41)</td>
<td>-2.608* (-13.48)</td>
<td>-0.321* (-6.02)</td>
<td>-5.348* (-17.08)</td>
</tr>
<tr>
<td>return</td>
<td>-1.648 (-1.56)</td>
<td>-3.622** (-2.48)</td>
<td>0.878** (2.19)</td>
<td>-3.028 (-1.28)</td>
</tr>
<tr>
<td>Constant</td>
<td>3.190* (8.79)</td>
<td>9.260* (18.42)</td>
<td>0.547* (3.95)</td>
<td>10.343* (12.71)</td>
</tr>
<tr>
<td>R²</td>
<td>0.834</td>
<td>0.883</td>
<td>0.787</td>
<td>0.797</td>
</tr>
<tr>
<td>N</td>
<td>2559</td>
<td>2559</td>
<td>2559</td>
<td>2559</td>
</tr>
<tr>
<td>Index_*time FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>ETF FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
Reverse Split

HFT: 😊

Non-HFT: 😒

$50.02

$50.01

$50.00

$100.04

$100.03

$100.02

$100.01

$100.00
Conclusion

Non-HFTers provide better price of liquidity
 – HFTers are more active with large relative tick size
 • Price competition is more constrained

Non-informational channel of speed competition
 – Splits/reverse splits do not increase/decrease the amount of information of an ETF relative to its pair
 • But HFT activity change
 – HFT provides more liquidity for stocks with less information asymmetry and large relative tick size
Policy Implication

• Debates on HFT
 – Whether to pursue additional regulation on HFT
 – This paper: HFT can be consequence of existing regulation
 – Deregulation instead of more regulation?

• Tick size
 – A recently announced pilot program to increase tick size for less liquid stocks
 – Argument: wider tick size increase liquidity and controls HFT and finally increase IPO
 – We show the opposite
 – SEC should consider pilot program to decrease tick size for liquid stocks