Taxation, Redistribution and Frictional Labor Supply

Christopher Sleet and Hakkı Yazıcı

Carnegie Mellon University and Sabancı Üniversitesi

Becker-Friedman Institute May 18th, 2018

- Worker's pay depends on output produced and share of output kept.
- Low pay because of *low talent* or because matched with an *extractive firm*.
- Opportunity to search and match with a firm that extracts less and pays more creates **job ladders**.
- How should policy be designed in face of ex ante dispersion in worker talent and ex post risk of moving up, falling off or getting stuck on the job ladder?

- **Part 1**: General Framework for Thinking about Taxes in Frictional Environments.
- **Part 2**: Structural Frictional Model: Mirrlees (1971) + Burdett and Mortensen (1998).
 - 1 Private variation in worker talent.
 - **2** Intensive effort margin.
 - **3** Job creation and matching.
 - **4** On and off the job search.
 - 6 Taxes and benefits.

Taxing with Frictions: Job Price Squeeze

- Higher taxes ⇒ most extractive firms must pay more to attract workers from unemployment.
- Competition for workers causes higher paying firms to raise worker incomes too. Revenues per job ("job price") squeezed.
- The job price squeeze:
 - **1** Raises incomes and income tax revenues.
 - **2** Reduces profit tax revenues.
 - **8** Redistributes within and across talent markets.
 - **4** Deters job creation.
- Taxes have complicated general equilibrium implications for job creation and the distribution of job prices that policymakers must consider.

- Theory: New optimal tax formulas.
 - Show how labor market frictions modify existing formulas.
- Quantitative: Model calibrated to the U.S. economy.
 - Frictions imply lower optimal marginal taxes.

- **Taxing with Exogenous Wages:** Mirrlees (1971); Diamond (1998), Saez (2001).
- **Taxation with Endogenous Wages:** Stiglitz (1982); Rothschild-Scheuer (2013, 2014); Ales-Kurnaz-Sleet (2015), Ales-Bellofatto-Wang (2014); Scheuer-Werning (2015,2016); Ales-Sleet (2016), Sachs-Tsyvinski-Werquin (2016), Stantcheva (2014).
- **Taxing with Search Frictions:** Boone-Bovenberg (2002, 2006); Hungerbühler et al (2006); Lehmann et al (2012), Golosov-Maziero-Menzio (2013); Bagger et al (2017).
- **Search Frictions:** Burdett-Mortensen (1998); Shimer (2012); Hornstein-Krusell-Violante (2011).

TAXING WITH FRICTIONS

- **Policy**: p = (b, T) is a benefit $b \in \mathbb{R}_+$ and an income tax function $T : \mathbb{R}_+ \to \mathbb{R}$.
 - Affine Tax: $T[x] = T_0 + \tau x$.
 - Nonlinear Tax: T[x] is smooth.

Worker Characteristics

Workers: Distributed over:

- Talent $\theta \in [\underline{\theta}, \overline{\theta})$.
 - Talent θ exerting effort *e* produces $z = \theta e$.
 - Distributed according to *K*.
- Job opportunities.
 - option to work.
 - fraction with an opportunity: $\mu(\theta; p)$.
- Job prices $q \in \mathbb{R}_+$.
 - Output captured by employer.

Worker residual claimant. Earnings: $x = \theta e - q$.

Distribution of workers over job prices: ω[q|θ; p].
 Inverse q(ω, θ; p).

Worker Characteristics

Workers: Distributed over:

- Talent $\theta \in [\underline{\theta}, \overline{\theta})$.
 - Talent θ exerting effort e produces $z = \theta e$.
 - Distributed according to *K*.
- Job opportunities.
 - option to work.
 - fraction with an opportunity: $\mu(\theta; p)$.
- Job prices $q \in \mathbb{R}_+$.
 - Output captured by employer.

Worker residual claimant. Earnings: $x = \theta e - q$.

- Distribution of workers over job prices: $\omega[q|\theta; p]$.
 - Inverse $q(\omega, \theta; p)$.

Depends on policy!

Worker Characteristics

Workers: Distributed over:

- Talent $\theta \in [\underline{\theta}, \overline{\theta})$.
 - Talent θ exerting effort e produces $z = \theta e$.
 - Distributed according to *K*.
- Job opportunities.
 - option to work.
 - fraction with an opportunity: $\mu(\theta; p)$.
- Job prices $q \in \mathbb{R}_+$.
 - Output captured by employer.

Worker residual claimant. Earnings: $x = \theta e - q$.

Distribution of workers over job prices: ω[q|θ; p].
 Inverse q(ω, θ; p).

Worker Preferences and Choices

• Like consumption, dislike effort:

 $U: \mathbb{R}_+ \times [0, \overline{e}) \to \mathbb{R}.$

• Without job opportunity:

U(b, 0).

• With job opportunity:

$$\Phi(q,\theta;p) = \max_{I}(1-I)U(b,0) + I\max_{x\in\mathbb{R}_{+}}U\left(x-T[x],\frac{x+q}{\theta}\right).$$

• Choose whether to work *I* and earnings *x*.

Policymaker's Problem

• Utiliarian policymaker maximizes expected payoff subject to budget constraint:

$$\max_{p} E[U] + \Lambda \cdot \{E[T] + \Pi - b \cdot u - \mathcal{G}\}$$

- E[T] expected income tax revenues; Π profit tax revenues.
- *u* unemployment rate, i.e. fraction without or who decline job opportunities.
- \mathcal{G} government spending.

▶ Full Statement

Perturbations

0L 0

- Optimal values denoted with *.
- Tax perturbation: $T^* + \varepsilon \Omega$.
 - Solution Affine: $\Omega(x) = x$.
 - Solution Nonlinear: $\Omega(x) = \mathbb{I}_{x_0}(x);$ $\Omega'(x) = \mathbb{D}_{x_0}(x).$

- Marginal impact of perturbation:
 - $\partial f^*(\Omega) = \frac{d}{d\varepsilon} f(T^* + \varepsilon \Omega) \Big|_{\varepsilon = 0}$.

(b) Limiting Nonlinear $\mathbb{I}_{\$10,000}$.

Income

0.5

1.5

 $\times 10^4$

Optimal Perturbation: Frictionless

Unemployment Revenue Loss

 $\circ \quad \partial(1-u^*)(\Omega) = -\mathbb{D}_{\tilde{\theta}^*} \cdot \partial \tilde{\theta}^*(\Omega)$

Employment response.

Optimal Perturbation: Frictional

$$E\left[(T^* - b^*)\partial(1 - u^*)(\Omega)\right] + \partial\Pi^*(\Omega)$$

Unemployment Revenue Loss

Proft Tax Loss

New Terms!

+

Where:

 $\mathcal{H}^*(\Omega) = \mathbb{I}_e \{ \Omega(x^*) + (1 - T^{*'}[x^*]) \partial q^*(\Omega) \}$

- $\partial q^*(\Omega) = \text{impact of tax on job price paid by worker.}$
- $\partial q^*(\Omega) < 0 \Rightarrow$ tax incidence falls on job prices.
- Then, cost to tax payers mitigated.
- Social benefit enhanced if low incomes have larger job price falls.

Where:

$$\begin{split} \partial x^*(\Omega) &= -\frac{x^*}{1-T'[x^*]} \frac{\mathcal{E}^{c*}}{1+\frac{T''[x^*]x^*}{1-T'[x^*]} \mathcal{E}^{c*}} \Omega'(x^*) \\ &- \frac{1}{1-T'^*[x^*]} \frac{\eta^*}{1+\frac{T''^*[x^*]x^*}{1-T'^*[x^*]} \mathcal{E}^{c*}} \Omega(x^*) \\ &+ \frac{1-\eta^*}{1+\frac{T''^*[x^*]x^*}{1-T'^*[x^*]} \mathcal{E}^{c*}} (-\partial q^*(\Omega)). \end{split}$$

• Incidence of taxes on job prices raises incomes and so income tax tax revenues paid by workers.

$$E\left[\frac{U^* - U(b^*, 0)}{\Lambda^*}(-\partial\mu^*)(\Omega)\right]$$

• Utility losses for job losers.

$$E\left[\frac{T^*-b^*}{1-u^*}\partial(1-u^*)(\Omega)\right]$$

 Revenue losses from job losers. Includes change in job opportunities and job acceptances.

 $\partial \Pi^*(\Omega)$

• If job prices accrue as firm profits and these are taxed at 100%. Tax incidence on job prices depresses profit taxes.

$$+\underbrace{E\left[(T^*-b^*)\partial(1-u^*)(\Omega)\right]}_{\substack{\text{Unemployment}\\\text{Revenue Loss}}}+\underbrace{\partial\Pi^*(\Omega)}_{\text{Proft Tax Loss}}$$

- Time continuous.
- Attention restricted to steady state equilibria and time invariant policy.
- Workers and firms trade effort for income in frictional labor markets segmented by talent.
- Preferences, technologies as before. Matching technology and firm behavior now spelt out.
- Job opportunity fraction μ and job prices q explicitly derived as functions of policy.

- Jumping onto the Ladder:
 - **1** Unemployed θ worker meets firm at rate $\lambda(\theta; p)$;
 - **2** conditional on meeting draw job price *q*;
 - **3** accepts, derives flow utility $\Phi(q, \theta; p) = \max_{x} U\left(x T[x], \frac{x+q}{\theta}\right)$ if $q \leq \overline{q}(\theta; p)$, where:

$$\Phi(\overline{q}(\theta;p),\theta;p) = \max_{x} U\left(x - T[x], \frac{x + \overline{q}(\theta;p)}{\theta}\right) = U(b,0).$$

 $\overline{q}(\theta; p) \text{ is maximum job price that will be accepted in market } \theta.$ $\overline{q}(\theta; p) \text{ is decreasing in } T[\underline{x}(\theta; p)], \ \underline{x}(\theta; p) = \arg \max_{x} U\left(x - T[x], \frac{x + \overline{q}(\theta; p)}{\theta}\right)$

• Climbing Ladder:

- **1** Employed θ worker with job price q meets new firm at rate $\lambda(\theta; p)$;
- **2** conditional on meeting, draws job price q';
- **3** accepts and moves if q' < q;
- **4** if accepts and moves, gets $\Phi(q', \theta; p)$ and earn $x(q', \theta; p)$.
- Moving **up** ladder means moving to **lower** job price, **higher** income.
 - And Falling Off:
 - Employed workers' jobs destroyed at rate δ .
 - Workers enter unemployment pool after job loss.

Firms

• Firms choose vacancies v, job prices q in each talent market to maximize steady state flow profit:

- Firms tradeoff being small & extractive (large *q*) vs. large & generous (small *q*).
- In equilibrium, firms distribute themselves over a set of *q*'s over which they are indifferent.
- Firms do not enter talent markets $[\underline{\theta}, \tilde{\theta}(p)]$, where:

 $\overline{q}(\tilde{\theta}(p),p) = 0.$

Matching

- $v(\theta; p) =$ vacancies created in talent market θ by firms.
- Standard matching technology:

$$m(v(\theta; p), k(\theta); p) = \chi v(\theta; p)^{\alpha} k(\theta)^{1-\alpha}.$$

• Equilibrium matching rates for workers:

$$\lambda(\theta; p) := \chi\left(\frac{v(\theta; p)}{k(\theta)}\right)^{\alpha}.$$

- δ = rate at which jobs are destroyed.
- $\frac{\lambda}{\delta}$ extent of frictions. Frictionless limit: $\frac{\lambda}{\delta} \to \infty$

Steady state equilibria

•
$$\mu(\theta; p) = 1 - u(\theta; p) = \frac{\lambda(\theta; p)}{\delta + \lambda(\theta; p)}.$$

• $\omega[q|\theta;p] = \frac{\delta + \lambda(\theta;p)}{\lambda(\theta)} - \frac{\delta}{\lambda(\theta;p)} \sqrt{\frac{\overline{q}(\theta;p)}{q}}$

$$\Rightarrow \quad q(\omega;\theta,p) = \left(\frac{1}{1 + \frac{\lambda(\theta;p)}{\delta}(1-\omega)}\right)^2 \overline{q}(\theta;p)$$

• $\kappa(\theta) = \frac{\chi^{\frac{1}{\alpha}} \delta \overline{q}(\theta;p)}{(\delta + \lambda(\theta;p))^2} \lambda(\theta;p)^{\frac{\alpha-1}{\alpha}}.$

- Job opportunity fraction.
- Steady state distribution of workers over job prices.
- Invert to get job price function.

• Firm first order condition; linear vacancy cost.

Key: policy impacts job opportunity fractions and job price functions via its impact on maximal job prices, \overline{q} .

Job Price Implications

$$\partial \overline{q}(\Omega)(\theta;p) = - \frac{\Omega(\underline{x}(\theta;p))}{1 - T'[\underline{x}(\theta;p)]} < 0$$

$$\frac{\partial q(\Omega)(\omega,\theta;p)}{q(\omega,\theta;p)} = - \mathcal{R}(\omega,\theta;p) \frac{\Omega(\underline{x}(\theta;p))}{1 - T'[\underline{x}(\theta;p)]} < 0$$

- Higher taxes squeeze maximal job prices.
 - Unemployment outside option sets floor.
 - \overline{q} must fall to compensate workers for higher taxes.
 - Squeeze depends on $\Omega(\underline{x}(\theta; p))$ and T'.
- And job prices fall along job ladder.
 - Competition transmits fall in \overline{q} up job ladder.
 - Weakens as we move up ladder (to lower q and ω).
 - Dampened too by disincentive to post vacancies.

Job Price Implications

$$\frac{\partial q(\Omega)(\omega,\theta;p)}{q(\omega,\theta;p)} = -\mathcal{R}(\omega,\theta;p)\frac{\Omega(\underline{x}(\theta;p))}{1-T'[\underline{x}(\theta;p)]} < 0$$

- Tax incidence falls on job prices.
 - Especially at bottom of job ladders, reinforces redistributive goals.
 - But pattern of incidence across talent markets (may) overturn this.
 - Affine tax perturbations or nonlinear tax perturbations at high incomes depress high talent job prices and benefit high earners.

$$\frac{\partial \mu(\Omega)(\theta;p)}{\mu(\theta;p)} = -\left(1-\mu(\theta;p)\right) \frac{\mathcal{L}(\theta;p)}{\overline{q}(\theta;p)} \frac{\Omega(\underline{x}(\theta;p))}{1-T'[\underline{x}(\theta;p)]} < 0$$

• Higher taxes diminish fraction of workers with job.

Profit taxes also diminished.

CALIBRATION

Simple Burdett-Mortensen model with exogenous match rate

- Exogenous matching rate: $\lambda(\theta; p) = \chi$; firms cannot scale arrival rate of meetings by posting multiple vacancies.
- Matching, $\alpha = 0$,

$$m(v, k(\theta); p) = \chi k(\theta), \qquad \Rightarrow \lambda(\theta; p) = \chi.$$

• Vacancy cost:

$$\kappa(v,\theta) = \begin{cases} 0 & v \in [0,1] \\ \infty & v > 1 \end{cases} \quad \Rightarrow \Pi(p) = E[q|p].$$

• Worker preferences

$$U(c - h(y)) = \frac{1}{1 - \sigma} \left(c - \frac{1}{1 + \gamma} y^{1 + \gamma} \right)^{1 - \sigma}.$$

- Baseline: $\sigma = 2$, $\gamma = 1$, $\gamma = 2$.
- Labor market
 - $\delta = 0.03$. (Monthly, Shimer (2012)).
 - $\lambda = 0.118$.
 - $\lambda_u = 0.4$ (Monthly, Shimer (2012)), $\lambda_e = 0.12$. (Hornstein-Krusell-Violante (2011)).
 - $\lambda = 0.06 \times \lambda_u + 0.94 \times \lambda_e \approx 0.118$.

Recovering talent distribution

$$h(x;p) = \int_{\underline{\theta}(x;p)}^{\overline{\theta}(x;p)} P(x|\theta;p)k(\theta)d\theta \qquad (*)$$

• *h* = density of employed across current incomes. From data.

where:

$$P(x|\theta;p) = \frac{\delta}{2\lambda} \sqrt{\frac{\frac{T_0 - b}{1 - \tau} + \frac{\gamma}{1 + \gamma} \theta^{\frac{1 + \gamma}{\gamma}} (1 - \tau)^{\frac{1}{\gamma}}}{\{(1 - \tau)^{\frac{1}{\gamma}} \theta^{\frac{1 + \gamma}{\gamma}} - x\}^3}}$$

• *P* is kernel giving conditional distribution of talents over income. Given by model.

for $\theta \in [\underline{\theta}(x;p), \overline{\theta}(x;p)]$

• Would like to invert (*).

• Fredholm equation of first kind: Utilize analogy with estimation of random coefficients models.

Recovering talent distribution

- Fix income grid, basis functions $\{\zeta_r\}$ for *k*.
- Compute discrete income distribution implied by each basis function, e.g.

$$\ell_{i,r} = \int_{x_i}^{x_{i+1}} \int_{\underline{\theta}(x;p)}^{\overline{\theta}(x;p)} P(x|\theta;p)\zeta_r(\theta) d\theta dx$$

• Estimate basis function weights *a* to best matches empirical income distribution, e.g.

 $a = \arg\min_{a \in \Delta^R} \sum_{i=1}^{I} \left(\hat{H}_i - \sum_{r=1}^{R} a_r \ell_{i,r} \right)^2, \quad \hat{H}_i = \text{fraction of workers in data with } x \in [x_i, x_{i+1}]$

• Approximate $\hat{k} = \sum_{r=1}^{R} a_r \zeta_r$.

Calibrating the general model

- Empirical earnings distb'n from CPS March 2016 release.
- Affine approximation to current US government tax policy:

$$T[x] = -302.56 + 0.336_{(2.526)} x.$$

Calibrated Talent Densities

Figure: Talent densities

RESULTS: OPTIMAL AFFINE TAXATION

Optimal Affine Tax Perturbation

Recall Affine Tax: $T^*[x] = T_0 + \tau^* x$,

First order condition is:

Where:

$$\mathcal{H}^* = \underbrace{x^* + (1 - \tau^*) \partial q^*}_{}$$

Tax induced job price adjustment dampens redistribution from high earners

Optimal Affine Policy

Variable	$\mathcal{G} = 0.25, \gamma = 1$		
	$\frac{\lambda}{\delta} \approx 4$	$\frac{\lambda}{\delta} = 10$	$\frac{\lambda}{\delta} = 100$
au	30.4	32.8	35.0
T_0	162	259	334
b	749	727	699
π	263	128	15
PS	-4.7×10^{-4}	-1.7×10^{-4}	-7.7×10^{-6}

 T_0 , *b*, π : monthly 2015 US \$ amounts. π = per capita monthly profit. PS = sum of Profit Squeeze terms in tax equation.

- Frictions: a force for moderately lower taxes.
- Squeezing of profit tax revenues and redistribution across talent markets trumps redistribution within talent markets.

Sensitivity

RESULTS: OPTIMAL NONLINEAR TAXATION

Optimal Nonlinear Tax Perturbation

Optimal tax function locally linear \Rightarrow

$$\underbrace{-\operatorname{Cov}\!\left[\frac{U_c^*}{E[U_c^*]}, \mathcal{H}^*\right]}_{\substack{\text{Redistribution}\\ \text{Benefit}}} = \underbrace{\frac{T^{*\prime}[x_0]x_0}{1 - T^{*\prime}[x_0]}E[\mathcal{E}^{c*}|x_0]h^*(x_0)}_{\substack{\text{Behavioral/Equilibrium}\\ \text{Revenue Loss}}}$$

Where:

$$\mathcal{H}^* = \mathbb{I}_e \{ \mathbb{I}_{x_0}(x^*) + (1 - T^{*'}[x^*]) \partial q^*(\mathbb{I}_{x_0}) \}$$

Tax induced job price adjustment dampens redistribution from high earners

36 / 38

Optimal Tax Rates

Figure: Marginal tax rates as function of income *x* when $\gamma = 1$. Plotted for the baseline value of $\lambda/\delta = 4$ and $\lambda/\delta = 10,100$. Also, $\mathcal{G} = 0.25 \times$ GDP.

▶ Sensitivity

Conclusions

- In (frictional) labor markets, incomes depend on talent and extractiveness of employer.
- Workers distributed across employers adopting different job pricing strategies and unemployment.
- Taxes have complicated general equilibrium implications for job creation and the distribution of job prices:
 - Higher *T* squeezes job prices and raises worker incomes.
 - Raises income tax revenues, but lowers profit tax revenues.
 - Redistributes within and across talent markets.
 - Deters vacancy creation and lowers employment.
- Quantitative analysis suggests accounting for frictions leads to lower income tax prescriptions.

Taxation, Redistribution and Frictional Labor Supply

Christopher Sleet and Hakkı Yazıcı

Carnegie Mellon University and Sabancı Üniversitesi

Becker-Friedman Institute May 18th, 2018

Social Payoff and Budget Constraint

• Expected payoff to the population of workers is:

$$\begin{split} U(b,0) \left\{ \int_{\theta} \{1 - \mu(\theta;p)\} K(d\theta) + \left\{ \int_{q} \{1 - I(q,\theta;p)\} G[dq|\theta;p] \right\} \mu(\theta;p) K[d\theta] \right\} \\ + \int_{\theta} \int_{q} I(q,\theta;p) \Phi(q,\theta;p) G[dq|\theta;p] \mu(\theta;p) K[d\theta]. \end{split}$$

• Budget constraint:

$$\begin{split} -b \int_{\Theta} \left\{ \{1 - \mu(\theta; p)\} + \int_{\mathbb{R}_{+}} \{1 - I(q, \theta; p)\} G[dq|\theta; p] \mu(\theta; p) \right\} K[d\theta] \\ + \int_{\Theta} \int_{\mathbb{R}_{+}} I(q, \theta; p) T[x(q, \theta; p)] G[dq|\theta; p] \mu(\theta; p) K[d\theta] + \Pi(p) \end{split}$$

where $\Pi(p)$ is profit tax revenue.

Policy problem

• Lagrangian:

$$\begin{split} \max_{p} U(b,0) \left\{ \int_{\theta} \{1 - \mu(\theta;p)\} K(d\theta) + \left\{ \int_{q} \{1 - I(q,\theta;p)\} G[dq|\theta;p] \right\} \mu(\theta;p) K[d\theta] \right\} \\ + \int_{\theta} \int_{q} I(q,\theta;p) \Phi(q,\theta;p) G[dq|\theta;p] \mu(\theta;p) K[d\theta] \\ + \Lambda \left\{ -b \int_{\Theta} \left\{ \{1 - \mu(\theta;p)\} + \int_{\mathbb{R}_{+}} \{1 - I(q,\theta;p)\} G[dq|\theta;p] \mu(\theta;p) \right\} K[d\theta] \\ + \int_{\Theta} \int_{\mathbb{R}_{+}} I(q,\theta;p) T[x(q,\theta;p)] G[dq|\theta;p] \mu(\theta;p) K[d\theta] + \Pi(p) \right\} \end{split}$$

- Perturbations at optimum:
 - $\partial f^*(\Omega) = \frac{d}{d\varepsilon} f(T^* + \varepsilon \Omega) \Big|_{\varepsilon=0}$, for Ω = perturbation function;

Solution Affine case: $\Omega(x) = x$ or $\Omega(x) = 1$.

Solution Nonlinear case: $\Omega(x) = \mathbb{I}_{x_0}(x)$; $\Omega'(x) = \mathbb{D}_{x_0}(x)$.

Optimal perturbation: Frictionless

Revenue Loss

Proft Tax Loss

Go Back
 Go
 Go

G
 Go
 Go

Recovering talent distribution and vacancy cost

- Step 1: Obtain estimates of talent density conditional on employment ϕ and unemployment ν , unconditional talent density k and match rate λ .
 - Fix income grid, basis functions $\{\zeta_r\}$ for ϕ , $\{\xi_r\}$ and ν and initial λ^0 .
 - Given λ^{j} , compute discrete income distribution implied by each basis function, e.g.

$$\ell_{i,r}^{j} = \int_{x_{i}}^{x_{i+1}} \int_{\underline{\theta}(x;p,\lambda^{j})}^{\overline{\theta}(x;p)} P(x|\theta;p,\lambda^{j})\zeta_{r}(\theta)d\theta dx$$

• Estimate basis function weights a^j and b^j to best matches distributions in data, e.g.

$$a^{j} = \arg\min_{a \in \Delta^{R}} \sum_{i=1}^{I} \left(\hat{H}_{i} - \sum_{r=1}^{R} a_{r} \ell_{i,r}^{j} \right)^{2}, \quad \hat{H}_{i} = \text{fraction of workers in data with } x \in [x_{i}, x_{i+1}]$$

- Use approximations $\hat{\phi}^j = \sum_{r=1}^R a_r^j \zeta_r(\theta)$ and $\hat{\nu}^j = \sum_{r=1}^R b_r \xi_r^j(\theta)$ and definitions to build estimates of \hat{k} and $\hat{\lambda}$.
- Repeat steps with j = j + 1 if $\|\lambda^{j+1} \lambda^j\| > \varepsilon$.

• Step 2: Use firm first order conditions to recover vacancy cost function κ .

Recovering talent distribution and vacancy cost

- Step 1: Obtain estimates of talent density conditional on employment ϕ and unemployment ν , unconditional talent density k and match rate λ .
 - Fix income grid, basis functions $\{\zeta_r\}$ for ϕ , $\{\xi_r\}$ and ν and initial λ^0 .
 - Given λ^{j} , compute discrete income distribution implied by each basis function, e.g.

$$\ell^{j}_{i,r} = \int_{x_{i}}^{x_{i+1}} \int_{\underline{\theta}(x;p,\lambda^{j})}^{\overline{\theta}(x;p)} P(x|\theta;p,\lambda^{j})\zeta_{r}(\theta)d\theta dx$$

• Estimate basis function weights a^j and b^j to best matches distributions in data, e.g.

 $a^{j} = \arg \min_{a \in \Delta^{R}} \sum_{i=1}^{I} \left(\hat{H}_{i} - \sum_{r=1}^{R} a_{r} \ell_{i,r}^{j} \right)^{2}, \quad \hat{H}_{i} = \text{fraction of workers in data with } x \in [x_{i}, x_{i+1}]$

- Use approximations $\hat{\phi}^j = \sum_{r=1}^R a_r^j \zeta_r(\theta)$ and $\hat{\nu}^j = \sum_{r=1}^R b_r \xi_r^j(\theta)$ and definitions to build estimates of \hat{k} and $\hat{\lambda}$.
- Repeat steps with j = j + 1 if $\|\lambda^{j+1} \lambda^j\| > \varepsilon$.
- Step 2: Use firm first order conditions to recover vacancy cost function κ .

Variable	$\mathcal{G} = 0.25, \gamma = 2$		
	$\frac{\lambda}{\delta} \approx 4$	$\frac{\lambda}{\delta} = 10$	$\frac{\lambda}{\delta} = 100$
au	44.8	47.3	48.4
L	714	812	827
b	1102	1054	1003
π	346	174	20

Notes: L, *b* and π are monthly 2015 US \$ amounts. π is per capita monthly profit.

Optimal Tax Rates under Lower LS Elasticity

Figure: Marginal tax rates as function of income *x* when $\gamma = 2$. Plotted for the baseline value of $\lambda/\delta = 4$ and $\lambda/\delta = 10,100$. Also, $\mathcal{G} = 0.25 \times$ GDP.

◀ Go Back

Optimal Nonlinear Tax Perturbation

Where:

$$\mathcal{H}^* = \mathbb{I}_e \{ \mathbb{I}_{x_0}(x^*) + (1 - T^{*'}[x^*]) \partial q^* \}$$

$$-\partial x^* = \frac{x^*}{1 - T'[x^*]} \frac{\mathcal{E}^{c*}}{1 + \frac{T''[x^*]x^*}{1 - T'[x^*]}} \mathbb{D}_{x_0}(x^*) \\ + \frac{1}{1 + \frac{T''*[x^*]x^*}{1 - T'^*[x^*]}} \mathcal{E}^{c*} \partial q^*$$

$$\frac{\partial q^*(\omega,\theta)}{q^*(\omega,\theta)} = -\mathcal{R}^*(\omega,\theta) \frac{\mathbb{I}_{x_0}(\underline{x}^*(\theta))}{1 - T^{*\prime}[\underline{x}^*(\theta)]}$$

◀ Go Back