The Effect of Central Bank Liquidity Injections on Bank Credit Supply

Luisa Carpinelli, Bank of Italy
Matteo Crosignani, Federal Reserve Board

Macro Financial Modeling Group Winter 2017 Meeting
9 March 2017

Disclaimer: The views expressed in this presentation are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System or of anyone else associated with the Federal Reserve System, the Bank of Italy or of the Eurosystem.
Central Bank Liquidity Provision During Crises

Central banks providing extraordinary liquidity during crises
- Fed (TAF), ECB (LTRO), BoE (FLS)
- Goal: restore bank credit supply following a negative shock

Theory
- Banks are fragile because of liquidity transformation
- Banks hit by a negative shock reduce credit supply
- Central bank liquidity provision restores bank credit supply

Empirical evaluation is difficult
- Recent episodes
- Data limitation
- Even with data, not obvious how to use
This Paper

Analyze the effectiveness of central bank liquidity injections
• ECB December 2011 liquidity provision
• Official goal of “supporting bank lending”

The intervention
• The 3-Year Long Term Refinancing Operation
• Provision of collateralized loans to banks
• Largest liquidity provision in history (€1 trillion)

Effect on Italian bank credit supply
• Banks hit by a dry-up before the intervention
• Regulatory intervention to identify the transmission channel
• Combine loan credit registry and bank holdings of securities
Contribution

Central bank liquidity is effective in restoring bank credit supply following a wholesale funding dry-up

• Banks hit by the dry-up:
 - reduce credit supply during the dry-up
 - restore credit supply after the intervention
• Firms benefit from the intervention
Central bank liquidity is effective in restoring bank credit supply following a wholesale funding dry-up

- Banks hit by the dry-up:
 - reduce credit supply during the dry-up
 - restore credit supply after the intervention
- Firms benefit from the intervention

What’s new? Central banks can *restore* bank credit supply
Contribution

Central bank liquidity is effective in restoring bank credit supply following a wholesale funding dry-up
• Banks hit by the dry-up:
 - reduce credit supply during the dry-up
 - restore credit supply after the intervention
• Firms benefit from the intervention

What’s new? Central banks can *restore* bank credit supply

2) Central bank liquidity encourages reaching-for-yield
• Banks not hit by the dry-up use central bank liquidity to buy high-yield securities
Central bank liquidity is effective in restoring bank credit supply following a wholesale funding dry-up

- Banks hit by the dry-up:
 - reduce credit supply during the dry-up
 - restore credit supply after the intervention
- Firms benefit from the intervention

What’s new? Central banks can restore bank credit supply

2) Central bank liquidity encourages reaching-for-yield

- Banks not hit by the dry-up use central bank liquidity to buy high-yield securities

What’s new? Transmission varies in the cross-section
Empirical Setting and Data
Sovereign CDS Spreads (bps)
The ECB 3-Year LTRO

3-Year Long Term Refinancing Operation (LTRO)
• Largest LOLR intervention in history
• Turning point of the crisis
• Italian and Spanish banks largest users (2/3 total uptake)

Simple design
• 3-year maturity collateralized cash loans
• Banks can choose how much to obtain in two allotments
• Need to pledge collateral (government bonds, ABS, ...)

Our laboratory: Italian economy
Italian Banks Suffer a Dry-Up
Data on the Entire Intermediation Chain

Central Bank to Banks
• Bank-level borrowing at ECB
• Bank-level borrowing at the 3-Year LTRO

Banks
• Standard balance-sheet characteristics
• Detailed composition of funding
• Security-level holdings (incl. collateral)

Bank to Firms
• All outstanding loans €30,000 (credit registry)
• Term loans, credit lines, trade credit

Firms
• Profitability and balance sheet characteristics
• Large subset (55%) of firms
Empirical Strategy
Two Empirical Challenges

1) Borrowers are not randomly assigned to banks
 - Stock of credit is an *equilibrium quantity* (demand, supply)

2) Negative funding shock is *non-random* and banks *choose* how much to borrow from the central bank
Two Empirical Challenges

1) Borrowers are not randomly assigned to banks
 - Stock of credit is an *equilibrium quantity* (demand, supply)

Solution: Compare credit growth from different banks within firms (Khwaja and Mian (2008))

2) Negative funding shock is *non-random* and banks *choose* how much to borrow from the central bank
Two Empirical Challenges

1) Borrowers are not randomly assigned to banks
 - Stock of credit is an *equilibrium quantity* (demand, supply)

Solution: Compare credit growth from different banks within firms (Khwaja and Mian (2008))

2) Negative funding shock is *non-random* and banks *choose* how much to borrow from the central bank

Solution 1: Reliance on the foreign wholesale market to capture the exposure to the dry-up (Iyer et al. (2014))
Solution 2: Regulatory experiment to capture the exposure to the intervention
Exposure to the Dry-Up

\[\text{Exposure}_j = \frac{\text{ForeignWholesale}_{j,\text{Jun11}}}{\text{Assets}_{j,\text{Jun11}}} \]
Exposure to the Dry-Up

\[
Exposure_j = \frac{ForeignWholesale_{j,Jun11}}{Assets_{j,Jun11}}
\]
Exposure to the Dry-Up

\[Exposure_j = \frac{ForeignWholesale_{j,Jun11}}{Assets_{j,Jun11}} \]

75% of loans belong to banks with exposure > 5%
Summary Statistics and Bank Exposure

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>Exposed</th>
<th>Non-Exposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Assets</td>
<td>billion €</td>
<td>11.0</td>
<td>1.3</td>
</tr>
<tr>
<td>Leverage</td>
<td>Units</td>
<td>13.2</td>
<td>10.8</td>
</tr>
<tr>
<td>Tier 1 Ratio</td>
<td>Units</td>
<td>9.1</td>
<td>11.4</td>
</tr>
<tr>
<td>Risk-Weighted Assets</td>
<td>% Assets</td>
<td>71.2</td>
<td>68.0</td>
</tr>
<tr>
<td>Nonperforming Loans</td>
<td>% Loans</td>
<td>8.6</td>
<td>8.7</td>
</tr>
<tr>
<td>Private Credit</td>
<td>% Assets</td>
<td>68.9</td>
<td>70.1</td>
</tr>
<tr>
<td>Securities</td>
<td>% Assets</td>
<td>14.2</td>
<td>14.0</td>
</tr>
<tr>
<td>Cash Reserves</td>
<td>% Assets</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>ROA</td>
<td>Profits/Assets</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Central Bank Borrowing</td>
<td>% Assets</td>
<td>1.8</td>
<td>0.0</td>
</tr>
<tr>
<td>Household Deposits</td>
<td>% Assets</td>
<td>24.7</td>
<td>34.9</td>
</tr>
<tr>
<td>Wholesale Funding</td>
<td>% Assets</td>
<td>12.2</td>
<td>1.6</td>
</tr>
<tr>
<td>Bond Financing</td>
<td>% Assets</td>
<td>22.8</td>
<td>20.2</td>
</tr>
</tbody>
</table>
Exposed Banks Are Large and Highly Levered

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>Exposed</th>
<th>Non-Exposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Assets</td>
<td>billion €</td>
<td>11.0</td>
<td>1.3</td>
</tr>
<tr>
<td>Leverage</td>
<td>Units</td>
<td>13.2</td>
<td>10.8</td>
</tr>
<tr>
<td>Tier 1 Ratio</td>
<td>Units</td>
<td>9.1</td>
<td>11.4</td>
</tr>
<tr>
<td>Risk-Weighted Assets</td>
<td>% Assets</td>
<td>71.2</td>
<td>68.0</td>
</tr>
<tr>
<td>Nonperforming Loans</td>
<td>% Loans</td>
<td>8.6</td>
<td>8.7</td>
</tr>
<tr>
<td>Private Credit</td>
<td>% Assets</td>
<td>68.9</td>
<td>70.1</td>
</tr>
<tr>
<td>Securities</td>
<td>% Assets</td>
<td>14.2</td>
<td>14.0</td>
</tr>
<tr>
<td>Cash Reserves</td>
<td>% Assets</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>ROA</td>
<td>Profits/Assets</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Central Bank Borrowing</td>
<td>% Assets</td>
<td>1.8</td>
<td>0.0</td>
</tr>
<tr>
<td>Household Deposits</td>
<td>% Assets</td>
<td>24.7</td>
<td>34.9</td>
</tr>
<tr>
<td>Wholesale Funding</td>
<td>% Assets</td>
<td>12.2</td>
<td>1.6</td>
</tr>
<tr>
<td>Bond Financing</td>
<td>% Assets</td>
<td>22.8</td>
<td>20.2</td>
</tr>
</tbody>
</table>
Exposed Banks Are Large and Highly Levered

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>Exposed</th>
<th>Non-Exposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Assets</td>
<td>billion €</td>
<td>11.0</td>
<td>1.3</td>
</tr>
<tr>
<td>Leverage</td>
<td>Units</td>
<td>13.2</td>
<td>10.8</td>
</tr>
<tr>
<td>Tier 1 Ratio</td>
<td>Units</td>
<td>9.1</td>
<td>11.4</td>
</tr>
<tr>
<td>Risk-Weighted Assets</td>
<td>% Assets</td>
<td>71.2</td>
<td>68.0</td>
</tr>
<tr>
<td>Nonperforming Loans</td>
<td>% Loans</td>
<td>8.6</td>
<td>8.7</td>
</tr>
<tr>
<td>Private Credit</td>
<td>% Assets</td>
<td>68.9</td>
<td>70.1</td>
</tr>
<tr>
<td>Securities</td>
<td>% Assets</td>
<td>14.2</td>
<td>14.0</td>
</tr>
<tr>
<td>Cash Reserves</td>
<td>% Assets</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>ROA</td>
<td>Profits/Assets</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Central Bank Borrowing</td>
<td>% Assets</td>
<td>1.8</td>
<td>0.0</td>
</tr>
<tr>
<td>Household Deposits</td>
<td>% Assets</td>
<td>24.7</td>
<td>34.9</td>
</tr>
<tr>
<td>Wholesale Funding</td>
<td>% Assets</td>
<td>12.2</td>
<td>1.6</td>
</tr>
<tr>
<td>Bond Financing</td>
<td>% Assets</td>
<td>22.8</td>
<td>20.2</td>
</tr>
</tbody>
</table>

→ Need to control for bank characteristics
Three Time Periods, Two Comparisons

We identify three periods from the evolution of bank funding and compare bank credit supply between
- the normal and the dry-up period
- the dry-up and the intervention period
Bank Credit Supply: Contraction and Restoration

![Graph showing the difference in credit growth percentage over time from December 2010 to June 2012.]
Transmission Channel
Banks Borrow ≈10% Total Assets at the LTRO
Reconciling Our Findings

Need to reconcile two findings:
1) Exposed banks restore their credit supply after the LTRO
2) All banks take advantage of the attractive ECB loans
Reconciling Our Findings

Need to reconcile two findings:
1) Exposed banks restore their credit supply after the LTRO
2) All banks take advantage of the attractive ECB loans

Exploit regulatory intervention by the Italian government
• Govt-guaranteed assets are eligible collateral at the ECB
• Dec11: Govt offers a guarantee on securities for a fee
• Banks can “manufacture” collateral
Reconciling Our Findings

Need to reconcile two findings:
1) Exposed banks restore their credit supply after the LTRO
2) All banks take advantage of the attractive ECB loans

Exploit regulatory intervention by the Italian government
• Govt-guaranteed assets are eligible collateral at the ECB
• Dec11: Govt offers a guarantee on securities for a fee
• Banks can “manufacture” collateral

Large use of the government program
• 28 banks create €102.8 billion collateral
• Govt-guaranteed collateral backs 57% of total ECB loans
• Exposed banks are the largest users (1Q 68% Vs. 4Q 17%)
1) Transmission to Bank Private Credit

\[\Delta \text{Credit_Granted}_{ijt} = \alpha + \beta U_{\text{take}_j} \times I_{\text{LTRO}} + \mu_{it} + \gamma_{ij} + \phi' X_{jt} + \epsilon_{ijt} \]
1) Transmission to Bank Private Credit

\[\Delta \text{Credit Granted}_{ijt} = \alpha + \beta \text{Uptake}_j \times \mathbb{I}_{\text{LTRO}} + \mu_{it} + \gamma_{ij} + \phi'X_{jt} + \epsilon_{ijt} \]

<table>
<thead>
<tr>
<th></th>
<th>(\Delta \text{Credit Granted})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Uptake}^{\text{Total}} \times \mathbb{I}_{\text{LTRO}})</td>
<td>-0.042 (0.144)</td>
</tr>
<tr>
<td>(\text{Uptake}^{\text{GovtGuarantee}} \times \mathbb{I}_{\text{LTRO}})</td>
<td>0.249** (0.122)</td>
</tr>
<tr>
<td>(\text{Uptake}^{\text{StandardCollateral}} \times \mathbb{I}_{\text{LTRO}})</td>
<td>-0.269* (0.142)</td>
</tr>
<tr>
<td>Bank-Firm FE</td>
<td>✓</td>
</tr>
<tr>
<td>Firm-Time FE</td>
<td>✓</td>
</tr>
<tr>
<td>Bal. Sheet Controls</td>
<td>✓</td>
</tr>
<tr>
<td>(N)</td>
<td>1,381,420</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.655</td>
</tr>
</tbody>
</table>
1) Transmission to Bank Private Credit

\[\Delta \text{Credit Granted}_{ijt} = \alpha + \beta \text{Uptake}_j \times \mathbb{I}_{\text{LTRO}} + \mu_{it} + \gamma_{ij} + \phi'X_{jt} + \epsilon_{ijt} \]

<table>
<thead>
<tr>
<th></th>
<th>(\Delta \text{Credit Granted})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U_{\text{Total}} \times \mathbb{I}_{\text{LTRO}})</td>
<td>-0.042 (0.144)</td>
</tr>
<tr>
<td>(U_{\text{Govt Guarantee}} \times \mathbb{I}_{\text{LTRO}})</td>
<td>0.249** (0.122)</td>
</tr>
<tr>
<td>(U_{\text{Standard Collateral}} \times \mathbb{I}_{\text{LTRO}})</td>
<td>-0.269* (0.142)</td>
</tr>
<tr>
<td>Bank-Firm FE</td>
<td>✓</td>
</tr>
<tr>
<td>Firm-Time FE</td>
<td>✓</td>
</tr>
<tr>
<td>Bal. Sheet Controls</td>
<td>✓</td>
</tr>
<tr>
<td>(N)</td>
<td>1,381,420</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.655</td>
</tr>
</tbody>
</table>

** indicates significance at 1% level.
2) Transmission to Holdings of Govt Bonds
Quantitative Results

Of total €181.5 billion
- €22.6 billion to firms
- €82.7 billion in government bonds
Quantitative Results

Of total €181.5 billion
- €22.6 billion to firms
- €82.7 billion in government bonds

€1 to banks that suffered the dry-up:
€0.13 to firms and €0.44 in government bonds

€1 to banks that did not suffer the dry-up:
€0 to firms and €0.83 in government bonds
Quantitative Results

Of total €181.5 billion
- €22.6 billion to firms
- €82.7 billion in government bonds

€1 to banks that suffered the dry-up:
€0.13 to firms and €0.44 in government bonds

€1 to banks that did not suffer the dry-up:
€0 to firms and €0.83 in government bonds

Counterfactual exercise (Chodorow-Reich (2014)):
with no LTRO bank credit-5.6% instead of observed -3.6%
Final Thoughts

Bagehot: “Central banks should require good quality collateral”
- Banks hit by the dry-up are likely collateral constrained
- Italian government guarantee: fiscal side of the intervention

More theory work is needed to understand the optimal collateral policy of central banks during crises