Large Matching Markets
Discussion of Konrad Menzel

B. Salanié

Columbia University

Chicago—September 2014
Major Achievements

First tractable framework to analyze flexible NTU matching models empirically.

Identification of pseudo-surplus:

$$W = U + V$$

Nice formula to recover complementarities in preferences from assortative matching patterns:

$$D_{xz} \log f(x, z) = D_{xz} W(x, z)$$

Salanié

Discussion of Menzel
First tractable framework to analyze flexible NTU matching models empirically
Major Achievements

First tractable framework to analyze flexible NTU matching models empirically

Identification of pseudo-surplus $\mathcal{W} = U + V$
Major Achievements

First tractable framework to analyze flexible NTU matching models empirically

Identification of pseudo-surplus $W = U + V$

Nice formula to recover complementarities in preferences from assortative matching patterns:

$$D_{xz} \log f(x, z) = D_{xz} W(x, z).$$
Mysteries

This is NTU, so how does $U + V$ come about? and why not $D_{xz}(x, z) = \frac{1}{2} D_{xz}(x, z)$ as in Choo-Siow 2006? What assumptions really matter?

1. NTU vs TU
2. many $i | x$, many $j | z$
3. many x and z
4. η_{ij}, ζ_{ji} are in MDA (Gumbel)
5. they have the same σ
6. they are iid.

Salanié

Discussion of Menzel
This is NTU, so how does $U + V$ come about?
This is NTU, so how does \(U + V \) come about?
and why not

\[
D_{xz} \log f(x, z) = \frac{1}{2} D_{xz} W(x, z)
\]
as in Choo-Siow 2006?
This is NTU, so how does $U + V$ come about? and why not

$$D_{xz} \log f(x, z) = \frac{1}{2} D_{xz} W(x, z)$$

as in Choo-Siw 2006?

What assumptions really matter?
This is NTU, so how does $U + V$ come about?
and why not
\[D_{xz} \log f(x, z) = \frac{1}{2} D_{xz} W(x, z) \]
as in Choo-Siow 2006?

What assumptions really matter?

1. **NTU vs TU**
This is NTU, so how does $U + V$ come about? and why not

$$D_{xz} \log f(x, z) = \frac{1}{2} D_{xz} W(x, z)$$

as in Choo-Siow 2006?

What assumptions really matter?

1. NTU vs TU
2. many $i|x$, many $j|z$
This is NTU, so how does $U + V$ come about? and why not

$$D_{xz} \log f(x, z) = \frac{1}{2} D_{xz} W(x, z)$$

as in Choo-Siow 2006?

What assumptions really matter?

1. NTU vs TU
2. many $i|x$, many $j|z$
3. many x and z

η_{ij}, ζ_{ji} are in MDA (Gumbel)

they have the same σ

they are iid.
This is NTU, so how does $U + V$ come about?
and why not

$$D_{xz} \log f(x, z) = \frac{1}{2} D_{xz} W(x, z)$$

as in Choo-Siow 2006?

What assumptions really matter?

1. NTU vs TU
2. many $i|x$, many $j|z$
3. many x and z
4. η_{ij}, ζ_{ji} are in MDA(Gumbel)
This is NTU, so how does $U + V$ come about? and why not

$$D_{xz} \log f(x, z) = \frac{1}{2} D_{xz} W(x, z)$$

as in Choo-Siow 2006?

What assumptions really matter?

1. NTU vs TU
2. many $i|x$, many $j|z$
3. many x and z
4. η_{ij}, ζ_{ji} are in MDA(Gumbel)
5. they have the same σ
This is NTU, so how does $U + V$ come about? and why not

$$D_{xz} \log f(x, z) = \frac{1}{2} D_{xz} W(x, z)$$

as in Choo-Siow 2006?

What assumptions really matter?

1. NTU vs TU
2. many $i|x$, many $j|z$
3. many x and z
4. η_{ij}, ζ_{ji} are in MDA(Gumbel)
5. they have the same σ
6. they are iid.
My answers

1. NTU vs TU: does not matter that much (Galichon–Kominers–Weber)

2. \(\text{many } i | x, \text{many } j | z:\) very important

3. \(\text{many } x \text{ and } z:\) almost irrelevant

4. \(\eta_{ij}, \zeta_{ji}\) are in MDA (Gumbel): \(??\) — e.g. trade people use Fréchet

5. \(\text{they have the same } \sigma:\) otherwise \(D_{xz}\) formula changes slightly

6. \(\eta_{ij}, \zeta_{ji}\) are iid: important but not so crucial (Galichon–Salanié).

Discussion of Menzel
My answers

1. *NTU vs TU*: does not matter that much (Galichon–Kominers–Weber)

2. many $i \mid x$, many $j \mid z$: very important

3. many x and z: almost irrelevant

4. η_{ij}, ζ_{ji} are in MDA (Gumbel):

5. they have the same σ: otherwise D_{xz} formula changes slightly

6. η_{ij}, ζ_{ji} are iid: important but not so crucial (Galichon–Salanié).

Discussion of Menzel
My answers

1. *NTU vs TU*: does not matter that much (Galichon–Kominers–Weber)

2. *many $i|x$, many $j|z$*: very important
My answers

1. *NTU vs TU*: does not matter that much (Galichon–Kominers–Weber)
2. *many i|x, many j|z*: very important
3. *many x and z*: almost irrelevant
My answers

1. *NTU vs TU:* does not matter that much (Galichon–Kominers–Weber)
2. *many i|x, many j|z:* very important
3. *many x and z:* almost irrelevant
4. *η_{ij}, ζ_{ji} are in MDA(Gumbel):* ?? — e.g. trade people use Fréchet
My answers

1. *NTU vs TU*: does not matter that much (Galichon–Kominers–Weber)
2. *many $i|\!\!\!|x$, many $j|\!\!\!|z$*: very important
3. *many x and z*: almost irrelevant
4. η_{ij}, ζ_{ji} are in MDA(*Gumbel*): ?? — e.g. trade people use Fréchet
5. *they have the same σ*: otherwise D_{xz} formula changes slightly
My answers

1. *NTU vs TU*: does not matter that much (Galichon–Kominers–Weber)
2. *many* $i \mid x$, *many* $j \mid z$: very important
3. *many* x and z: almost irrelevant
4. η_{ij}, ζ_{ji} *are in* $MDA(Gumbel)$: ?? — e.g. trade people use Fréchet
5. *they have the same* σ: otherwise D_{xz} formula changes slightly
6. η_{ij}, ζ_{ji} *are iid*: important but not so crucial (Galichon–Salanié).
Intuitive and sloppy explanation

Drop singles for simplicity (everyone has to match)

Utility of woman

\[u_i = \max \left\{ U(x_i, z_j) + \sigma \eta_{ij} \mid V(z_j, x_i) + \sigma \zeta_{ji} \geq v_j \right\} \]

Gumbel is in MDA(Gumbel), so assume \(\eta, \zeta \) are Gumbel ("logit")

the max of logits is logits:

\[u_i = u_{x_i} + \bar{\eta}_i \]

with

\[u_{x_i} = \log \sum_{j \in M_i} \mu \exp \left(U(x, z_j) \right) \]

Salanié

Discussion of Menzel
Drop singles for simplicity (everyone has to match)
Intuitive and sloppy explanation

Drop singles for simplicity (everyone has to match)
Utility of woman i in equilibrium

$$u_i = \max \{ U(x_i, z_j) + \sigma \eta_{ij} \mid V(z_j, x_i) + \sigma \zeta_{ji} \geq v_j \}.$$
Intuitive and sloppy explanation

Drop singles for simplicity (everyone has to match)

Utility of woman i in equilibrium

$$u_i = \max \{ U(x_i, z_j) + \sigma \eta_{ij} \mid V(z_j, x_i) + \sigma \zeta_{ji} \geq v_j \}.$$

Gumbel is in MDA(Gumbel), so assume η, ζ are Gumbel ("logit")
Drop singles for simplicity (everyone has to match)
Utility of woman i in equilibrium

$$u_i = \max\{U(x_i, z_j) + \sigma \eta_{ij} \mid V(z_j, x_i) + \sigma \zeta_{ji} \geq v_j\}.$$

Gumbel is in MDA(Gumbel), so assume η, ζ are Gumbel ("logit")
the max of logits is logits:

$$u_i = u_{x_i} + \tilde{\eta}_i$$
Intuitive and sloppy explanation

Drop singles for simplicity (everyone has to match)

Utility of woman i in equilibrium

$$u_i = \max \{ U(x_i, z_j) + \sigma \eta_{ij} \mid V(z_j, x_i) + \sigma \zeta_{ji} \geq v_j \}.$$

Gumbel is in MDA(Gumbel), so assume η, ζ are Gumbel ("logit") the max of logits is logits:

$$u_i = u_{x_i} + \tilde{\eta}_i$$

with

$$u_{x_i} = \log \sum_{j \in M_i[\mu]} \exp (U(x, z_j)).$$
Men of type z available to i

$N_z(i) = m_z Pr \left(V(z, x_i) + \sigma \zeta_{ji} \geq v_j \right)$

But $v_j = v_z + \bar{\zeta}_j$ is a logit, so $N_z(i) = 1 + \exp(v_z - V(z, x_i))$.

With many available j's of type z, $v_z \gg V(z, x_i)$; hence $N_z(i) \approx \exp(V(z, x_i) - v_z) \equiv N_z(x)$.

Salanié Discussion of Menzel
Men of type z available to i

they are $N_z(i) = m_z \Pr \left(V(z, x_i) + \sigma \zeta_{ji} \geq v_j \right)$
Men of type z available to i

they are $N_z(i) = m_z \Pr (V(z, x_i) + \sigma \zeta_{ji} \geq v_j)$
but $v_j = v_z + \zeta_j$ is a logit, so

$$N_z(i) = \frac{1}{1 + \exp(v_z - V(z, x_i))}.$$
they are \(N_z(i) = m_z \Pr (V(z, x_i) + \sigma \zeta_{ji} \geq v_j) \)

but \(v_j = v_z + \zeta_j \) is a logit, so

\[
N_z(i) = \frac{1}{1 + \exp(v_z - V(z, x_i))}.
\]

With many available \(j \)'s of type \(z \), \(v_z \gg V(z, x_i) \); hence

\[
N_z(i) \approx \exp(V(z, x_i) - v_z) \equiv N_z(x).
\]
\[\log \sum_N z(x) \exp(U(x, z)) \approx \log \sum_m z \exp(U(x, z) + V(z, x) - v z) \equiv \log \sum_m z \exp(W(x, z) - v z). \]

Coupled with

\[v z = \log \sum_w x \exp(W(x, z) - u x). \]

Or, more symmetric: for all \(x \) and \(z \),

\[\sum m z \exp(W(x, z) - u x - v z) = \sum w x \exp(W(x, z) - u x - v z) = 1. \]
\[u_x = \log \sum_z N_z(x) \exp(U(x, z)) \]
\[\simeq \log \sum_z m_z \exp(U(x, z) + V(z, x) - v_z) \]
\[\equiv \log \sum_z m_z \exp(W(x, z) - v_z) \]
\[u_x = \log \sum_z N_z(x) \exp(U(x, z)) \]

\[\simeq \log \sum_z m_z \exp(U(x, z) + V(z, x) - v_z) \]

\[\equiv \log \sum_z m_z \exp(W(x, z) - v_z) \]

coupled with \[v_z = \log \sum_x w_x \exp(W(x, z) - u_x) \].
\[u_x = \log \sum_z N_z(x) \exp(U(x, z)) \]
\[\simeq \log \sum_z m_z \exp(U(x, z) + V(z, x) - v_z) \]
\[\equiv \log \sum_z m_z \exp(W(x, z) - v_z) \]

coupled with \(v_z = \log \sum_x w_x \exp(W(x, z) - u_x) \).
Or, more symmetric: for all \(x \) and \(z \),
\[\sum_z m_z \exp(W(x, z) - u_x - v_z) = \sum_x w_x \exp(W(x, z) - u_x - v_z) = 1. \]
How did W come up?

$i \in x$ chooses z with probability $\exp(U(x,z))$. A man $j \in z$ is available to her with probability $\exp(V(z,x))$. With e.g. heteroskedasticity σ_x, τ_z 'a la Chiappori–Salanié–Weiss:

$$\exp(U(x,z)/\sigma_x) \times \exp(V(z,x)/\tau_z).$$
How did W come up?

$i \in x$ chooses z with probability $\sim \exp(U(x, z))$
How did W come up?

$i \in x$ chooses z with probability $\simeq \exp(U(x, z))$

A man $j \in z$ is available to her with probability $\simeq \exp(V(z, x))$
How did \(W \) come up?

\[i \in x \text{ chooses } z \text{ with probability } \sim \exp(U(x, z)) \]

a man \(j \in z \) is available to her with probability \(\sim \exp(V(z, x)) \)

shake and multiply.
How did W come up?

$i \in x$ chooses z with probability $\simeq \exp(U(x, z))$
a man $j \in z$ is available to her with probability $\simeq \exp(V(z, x))$

shake and multiply.

With e.g. heteroskedasticity σ_x, τ_z à la Chiappori–Salanié–Weiss:

$$\exp(U(x, z)/\sigma_x) \times \exp(V(z, x)/\tau_z).$$
Matching patterns and pseudo-surplus

$\text{choose types } z \text{ with frequency } f(z|x) \approx N(z(x)) \exp U(x,z) \sum_t N_t(x) \exp(U(x,t)) \equiv \exp(W(x,z) - d(x))$

so that

$D_{xz} \log f(x,z) = D_{xz} \log f(z|x) = D_{xz} W(x,z)$.
Matching patterns and pseudo-surplus

Types x choose types z with frequency

$$f(z|x) \sim \frac{N_z(x) \exp U(x, z)}{\sum_t N_t(x) \exp(U(x, t))} \equiv \exp(W(x, z) - d(x))$$
Types x choose types z with frequency

$$f(z|x) \sim \frac{N_z(x) \exp U(x, z)}{\sum_t N_t(x) \exp(U(x, t))} \equiv \exp (W(x, z) - d(x))$$

so that

$$D_{xz} \log f(x, z) = D_{xz} \log f(z|x) = D_{xz} W(x, z).$$
Extension

Allowing for "fixed effects" a la Choo and Siow,

\[U_{ij} = U(x_i, z_j) + f_{w,i}, z_j + \eta_{ij} \]

\[V_{ji} = V(z_j, x_i) + f_{m,j}, x_i + \zeta_{ji} \]

with any distribution a la Galichon–Salanié:

\[f_{w|x}, f_{m|z} \]

and iid \(\zeta_{ij} \) in MDA(Gumbel) as before.

Then we look for fixed points in functional spaces:

\[u_{x}(f_{w}) \]

\[v_{z}(f_{m}) \]

for all \(x \) and \(z \), and all \(f_{m} \) and \(f_{w} \),

\[\sum_{z} \exp \left(W(x, z) + f_{w}z - u_x(f_{w}) \right) E(f_{m}x - v_z(f_{m})|z) = 1 \]

\[\sum_{x} \exp \left(W(x, z) + f_{m}x - v_z(f_{m}) \right) E(f_{w}z - u_x(f_{w})|x) = 1 \].
Allowing for “fixed effects” à la Choo and Siow,

\[
\begin{align*}
U_{ij} &= U(x_i, z_j) + f_{i,z_j}^w + \eta_{ij} \\
V_{ji} &= V(z_j, x_i) + f_{j,x_i}^m + \zeta_{ji}
\end{align*}
\]
Allowing for “fixed effects” à la Choo and Siow,

\[
\begin{align*}
U_{ij} &= U(x_i, z_j) + f_{i,z_j}^w + \eta_{ij} \\
V_{ji} &= V(z_j, x_i) + f_{j,x_i}^m + \zeta_{ji}
\end{align*}
\]

with any distribution à la Galichon–Salanié: \(f^w \mid x, f^m \mid z \)
Allowing for “fixed effects” à la Choo and Siow,

\[
\begin{align*}
U_{ij} &= U(x_i, z_j) + f_{i,z_j}^w + \eta_{ij} \\
V_{ji} &= V(z_j, x_i) + f_{j,x_i}^m + \zeta_{ji}
\end{align*}
\]

with any distribution à la Galichon–Salanié: \(f^w| \cdot, f^m| \cdot \)
and iid \(\zeta_{ij} \) in MDA(Gumbel) as before.
Allowing for “fixed effects” à la Choo and Siow,

\[
\begin{align*}
U_{ij} &= U(x_i, z_j) + f_{i,z_j}^w + \eta_{ij} \\
V_{ji} &= V(z_j, x_i) + f_{j,x_i}^m + \zeta_{ji}
\end{align*}
\]

with any distribution à la Galichon–Salanié: \(f^w | x, f^m | z \) and iid \(\zeta_{ij} \) in MDA(Gumbel) as before.

Then we look for fixed points in functional spaces: \(u_x(f^w), v_z(f^m) \)
Allowing for “fixed effects” à la Choo and Siow,

\[
\begin{align*}
U_{ij} &= U(x_i, z_j) + f_{i,z_j} + \eta_{ij} \\
V_{ji} &= V(z_j, x_i) + f_{j,x_i} + \zeta_{ji}
\end{align*}
\]

with any distribution à la Galichon–Salanié: \(f^w | x, f^m | z \) and iid \(\zeta_{ij} \) in MDA(Gumbel) as before.

Then we look for fixed points in functional spaces: \(u_x(f^w), v_z(f^m) \) for all \(x \) and \(z \), and all \(f^m \) and \(f^w \),

\[
\begin{align*}
\sum_z m_z \exp \left(W(x, z) + f^w_z - u_x(f^w) \right) E \left(f^m_x - v_z(f^m) \mid z \right) &= 1 \\
\sum_x w_x \exp \left(W(x, z) + f^m_x - v_z(f^m) \right) E \left(f^w_z - u_x(f^w) \mid x \right) &= 1.
\end{align*}
\]
What Changes

Still true: only $W = U + V$ is identified. But now

$$D_{xz} \log f(x, z) = D_{xz} W(x, z) + D_{xz} \log E(\exp (f_w z - u_x (f_w)))|x) + D_{xz} \log E(\exp (f_m x - v_z (f_m)))|z).$$
Still true: only $W = U + V$ is identified
Still true: only $W = U + V$ is identified

But now

$$D_{xz} \log f(x, z) = D_{xz} W(x, z)$$
$$+ D_{xz} \log E \left(\exp \left(f^w_z - u_x(f^w) \right) \mid x \right)$$
$$+ D_{xz} \log E \left(\exp \left(f^m_x - v_z(f^m) \right) \mid z \right).$$
Special Case of Fixed Effects

Many values of z: then

$$\log E(\exp (f w z - u x (f w)))|x) \approx \log E(\exp (f w z)|x) + \log E(\exp(-u x (f w))|x).$$

Then the D_{xz} of the second term is zero; If moreover the distribution of $f w$ does not depend on x, the D_{xz} of the first term is zero and we get again $D_{xz} \log f(x, z) = D_{xz} W(x, z)$ even though we now allow for many forms of dependence.

Salanié Discussion of Menzel
Special Case of Fixed Effects

Many values of z: then

$$\log E (\exp (f^w_z - u_x(f^w)) \mid x) \simeq \log E (\exp (f^w_z) \mid x)$$

$$+ \log E (\exp(-u_x(f^w)) \mid x).$$
Special Case of Fixed Effects

Many values of z: then

$$\log E \left(\exp \left(f_z^w - u_x(f^w) \right) \mid x \right) \simeq$$

$$\log E \left(\exp \left(f_z^w \right) \mid x \right)$$

$$+ \log E \left(\exp \left(-u_x(f^w) \right) \mid x \right).$$

Then the D_{xz} of the second term is zero;

If moreover the distribution of f^w does not depend on x, we get again

$$D_{xz} \log f(x,z) = D_{xz} W(x,z)$$

even though we now allow for many forms of dependence.
Special Case of Fixed Effects

Many values of z: then

$$\log E \left(\exp \left(f_z^w - u_x(f^w) \right) | x \right) \simeq$$

$$\log E \left(\exp \left(f_z^w \right) | x \right) + \log E \left(\exp (-u_x(f^w)) | x \right).$$

Then the D_{xz} of the second term is zero; If moreover the distribution of f^w does not depend on x, the D_{xz} of the first term is zero.
Many values of z: then

$$\log E \left(\exp \left(f^w_z - u_x(f^w) \right) \mid x \right) \simeq$$

$$\log E \left(\exp \left(f^w_z \right) \mid x \right)$$

$$+ \log E \left(\exp \left(-u_x(f^w) \right) \mid x \right).$$

Then the D_{xz} of the second term is zero;
If moreover the distribution of f^w does not depend on x,
the D_{xz} of the first term is zero
and we get again

$$D_{xz} \log f(x, z) = D_{xz} W(x, z)$$
Many values of z: then

$$\log E \left(\exp \left(f_z^w - u_x(f^w) \right) \mid x \right) \simeq \log E \left(\exp \left(f_z^w \right) \mid x \right) + \log E \left(\exp(-u_x(f^w)) \mid x \right).$$

Then the D_{xz} of the second term is zero; If moreover the distribution of f^w does not depend on x, the D_{xz} of the first term is zero and we get again

$$D_{xz} \log f(x, z) = D_{xz} W(x, z)$$

even though we now allow for many forms of dependence.