Comparative Valuation Dynamics in Models with Financial Frictions

Lars Peter Hansen
Joseph Huang
Paymon Khorrami
Fabrice Tourre

The University of Chicago
Northwestern University

June 20, 2018
Research Objective

- **Research Goal**: Compare/contrast implications of DSGE models with financial frictions through study of their non-linear transmission mechanisms
Research Objective

- **Research Goal**: Compare/contrast implications of DSGE models with financial frictions through study of their non-linear transmission mechanisms

- **Models of Focus**
 - Continuous time with Brownian shocks
 - Financial intermediaries
 - Heterogeneous productivity, market access and preferences
Research Objective

- **Research Goal**: Compare/contrast implications of DSGE models with financial frictions through study of their non-linear transmission mechanisms

- **Models of Focus**
 - Continuous time with Brownian shocks
 - Financial intermediaries
 - Heterogeneous productivity, market access and preferences

- **Comparisons**
 - Macroeconomic quantity implications
 - Asset pricing implications
 - Macro- and micro-prudential policy
Research Objective

- **Research Goal**: Compare/contrast implications of DSGE models with financial frictions through study of their non-linear transmission mechanisms

- **Models of Focus**
 - Continuous time with Brownian shocks
 - Financial intermediaries
 - Heterogeneous productivity, market access and preferences

- **Comparisons**
 - Macroeconomic quantity implications
 - Asset pricing implications
 - Macro- and micro-prudential policy

- **Approach**: Nesting model
“Nesting” Model

- **Starting Point:** Brunnermeier & Sannikov (2016)
“Nesting” Model

- **Starting Point:** Brunnermeier & Sannikov (2016)
- **Agent Types:** “Households” and “Experts”
“Nesting” Model

- **Starting Point:** Brunnermeier & Sannikov (2016)
- **Agent Types:** “Households” and “Experts”
- **Technology**
 - A-K production function with $a_e \geq a_h$
 - TFP shocks (also called “capital quality shocks”)
 - Growth rate and stochastic vol shocks (long-run risk)
 - Idiosyncratic shocks
“Nesting” Model

- **Starting Point:** Brunnermeier & Sannikov (2016)

- **Agent Types:** “Households” and “Experts”

- **Technology**
 - A-K production function with $a_e \geq a_h$
 - TFP shocks (also called “capital quality shocks”)
 - growth rate and stochastic vol shocks (long-run risk)
 - idiosyncratic shocks

- **Markets**
 - Capital traded (with shorting constraint)
 - Complete financial markets for households
 - Experts facing “skin-in-the-game” equity issuance constraint
“Nesting” Model

- **Starting Point:** Brunnermeier & Sannikov (2016)

- **Agent Types:** “Households” and “Experts”

- **Technology**
 - A-K production function with \(a_e \geq a_h \)
 - TFP shocks (also called “capital quality shocks”)
 - Growth rate and stochastic vol shocks (long-run risk)
 - Idiosyncratic shocks

- **Markets**
 - Capital traded (with shorting constraint)
 - Complete financial markets for households
 - Experts facing “skin-in-the-game” equity issuance constraint

- **Preferences**
 - Recursive utility
 - Households and experts potentially different
 - OLG for technical reasons
“Nesting” Model

“Experts”

Assets
- Physical Capital
- Net Worth

Liabilities
- Risk Free
- External Equity

“Households”

Assets
- Physical Capital
- Risk Free
- Equities

Liabilities
- Net Worth
- Short Term
- Bonds

Dividends

Interest
Models Nested

- Complete markets with long run risk
 - Bansal & Yaron (2004)
 - Hansen, Heaton & Li (2008)
Complete markets with long run risk
 - Bansal & Yaron (2004)
 - Hansen, Heaton & Li (2008)

Complete markets with heterogeneous preferences
 - Longstaff & Wang (2012)
 - Garleanu & Panageas (2015)
Models Nested

- **Complete markets with long run risk**
 - Bansal & Yaron (2004)
 - Hansen, Heaton & Li (2008)

- **Complete markets with heterogeneous preferences**
 - Longstaff & Wang (2012)
 - Garleanu & Panageas (2015)

- **Complete markets for agg. risk with idiosyncratic shocks**
 - Di Tella (2017)
Models Nested

- **Complete markets with long run risk**
 - Bansal & Yaron (2004)
 - Hansen, Heaton & Li (2008)

- **Complete markets with heterogeneous preferences**
 - Longstaff & Wang (2012)
 - Garleanu & Panageas (2015)

- **Complete markets for agg. risk with idiosyncratic shocks**
 - Di Tella (2017)

- **Incomplete market/limited participation models**
 - Basak & Cuoco (1998)
 - Kogan & Makarov & Uppal (2007)
 - He & Krishnamurthy (2012)
Models Nested

- **Complete markets with long run risk**
 - Bansal & Yaron (2004)
 - Hansen, Heaton & Li (2008)

- **Complete markets with heterogeneous preferences**
 - Longstaff & Wang (2012)
 - Garleanu & Panageas (2015)

- **Complete markets for agg. risk with idiosyncratic shocks**
 - Di Tella (2017)

- **Incomplete market/limited participation models**
 - Basak & Cuoco (1998)
 - Kogan & Makarov & Uppal (2007)
 - He & Krishnamurthy (2012)

- **Incomplete market/capital misallocation models**
 - Brunnermeier & Sannikov (2014, 2016)
Overview of Solution Method

- Markov equilibrium – aggregate state vector X_t:
 - Exogenous states g_t (growth), s_t (agg. stochastic vol.), and ς_t (idio. stochastic vol.)
 - Endogenous state $w_t := \frac{N_{e,t}}{N_{e,t} + N_{h,t}}$ (wealth share)

"Value function" approach: $V_i(n_t, X_t) = n_{i+1} - \gamma_i \xi^i(X_t)$ (solutions to second order non-linear PDEs – implicit FD scheme with artificial time derivative ("false transient")

Each time-step: compute aggregate state dynamics and prices using the value functions from the previous time-step

Endogenous state partition due to occasionally-binding constraints

Implementation in C++ allowing for HPC

Details
Overview of Solution Method

- Markov equilibrium – aggregate state vector X_t:
 - Exogenous states g_t (growth), s_t (agg. stochastic vol.), and ς_t (idio. stochastic vol.)
 - Endogenous state $w_t := \frac{N_{e,t}}{N_{e,t} + N_{h,t}}$ (wealth share)

- “Value function” approach: $V_i(n_t, X_t) = n_{i,t}^{1-\gamma_i} \xi_i(X_t)$
Overview of Solution Method

- Markov equilibrium – aggregate state vector X_t:
 - Exogenous states g_t (growth), s_t (agg. stochastic vol.), and ς_t (idio. stochastic vol.)
 - Endogenous state $w_t := \frac{N_{e,t}}{N_{e,t} + N_{h,t}}$ (wealth share)

- “Value function” approach: $V_i(n_t, X_t) = n_t^{1-\gamma_i} \xi_i(X_t)$

- (ξ_e, ξ_h) solutions to second order non-linear PDEs – implicit FD scheme with artificial time derivative (“false transient”)

DSGE Models with Financial Frictions
June 20, 2018
Overview of Solution Method

- Markov equilibrium – aggregate state vector X_t:
 - Exogenous states g_t (growth), s_t (agg. stochastic vol.), and ς_t (idio. stochastic vol.)
 - Endogenous state $w_t := \frac{N_{e,t}}{N_{e,t} + N_{h,t}}$ (wealth share)

- “Value function” approach: $V_i(n_t, X_t) = n_{i,t}^{1-\gamma_i} \xi_i(X_t)$

- (ξ_e, ξ_h) solutions to second order non-linear PDEs – implicit FD scheme with artificial time derivative (“false transient”)

- Each time-step: compute aggregate state dynamics and prices using the value functions from the previous time-step
Overview of Solution Method

- Markov equilibrium – aggregate state vector X_t:
 - Exogenous states g_t (growth), s_t (agg. stochastic vol.), and ς_t (idio. stochastic vol.)
 - Endogenous state $w_t := \frac{N_{e,t}}{N_{e,t} + N_{h,t}}$ (wealth share)

- “Value function” approach: $V_i(n_t, X_t) = n_{i,t}^{1-\gamma_i} \xi_i(X_t)$

- (ξ_e, ξ_h) solutions to second order non-linear PDEs – implicit FD scheme with artificial time derivative (“false transient”)

- Each time-step: compute aggregate state dynamics and prices using the value functions from the previous time-step

- Endogenous state partition due to occasionally-binding constraints
Overview of Solution Method

- Markov equilibrium – aggregate state vector X_t:
 - Exogenous states g_t (growth), s_t (agg. stochastic vol.), and ς_t (idio. stochastic vol.)
 - Endogenous state $w_t := \frac{N_{e,t}}{N_{e,t} + N_{h,t}}$ (wealth share)

- “Value function” approach: $V_i(n_t, X_t) = n_{i,t}^{1-\gamma_i} \xi_i(X_t)$

- (ξ_e, ξ_h) solutions to second order non-linear PDEs – implicit FD scheme with artificial time derivative (“false transient”)

- Each time-step: compute aggregate state dynamics and prices using the value functions from the previous time-step

- Endogenous state partition due to occasionally-binding constraints

- Implementation in C++ allowing for HPC
Quantities

- Consumption/wealth ratio \((c_i/n_i)(X)\)
- Investment rate \(\iota(X)\)
- Output growth \(\mu_y(X)\)
Diagnostic Tools I

- **Quantities**
 - Consumption/wealth ratio $(c_i/n_i)(X)$
 - Investment rate $\iota(X)$
 - Output growth $\mu_y(X)$

- **Prices**
 - Risk-free rate $r(X)$
 - Risk-price vectors $\pi_i(X)$ (one per agent)
 - Capital price q
Quantities
- Consumption/wealth ratio \((c_i/n_i)(X)\)
- Investment rate \(\iota(X)\)
- Output growth \(\mu_y(X)\)

Prices
- Risk-free rate \(r(X)\)
- Risk-price vectors \(\pi_i(X)\) (one per agent)
- Capital price \(q\)

Aggregate state dynamics
- Drift \(\mu_X(X)\) and diffusion \(\sigma_X(X)\) of aggregate state vector
- Ergodic density \(f(X)\)
Diagnostic Tools II

- Transition dynamics and valuation through altering cash flow exposure to shocks

Formal Definition

\[\epsilon_C(X, t; \vec{\nu}) \] gives us:

\[
\% \text{ ∆ in expected future cash-flow } C_t \text{ given a unit increase in exposure of that cash-flow to a shock (in direction } \vec{\nu}) \text{ today}
\]

counterpart to IRF for models with non-linear state dynamics

\[\epsilon_C(X, t; \vec{\nu}) - \epsilon_S \]

\[\% \text{ ∆ in expected return (per unit of risk) of cash-flow } C_t \text{ perceived by investor } i \text{ given a unit increase in exposure of that cash-flow to a shock (in direction } \vec{\nu}) \text{ today}
\]

counterpart to (investor-specific) Sharpe ratio for dividend strips

Those shock exposure and price elasticities depend on the current state \(X \), depends on the horizon \(t \), depends on the marginal investor \(i \) (for price elasticities).

DSGE Models with Financial Frictions
June 20, 2018
Diagnostic Tools II

- Transition dynamics and valuation through altering cash flow exposure to shocks
- Shock exposure elasticity $\epsilon_C(X, t; \vec{v})$ gives us:
 - % Δ in expected future cash-flow C_t given a unit increase in exposure of that cash-flow to a shock (in direction \vec{v}) today
 - counterpart to IRF for models with non-linear state dynamics

Formal Definition

DSGE Models with Financial Frictions
Transition dynamics and valuation through altering cash flow exposure to shocks

- Shock exposure elasticity $\epsilon_C (X, t; \vec{\nu})$ gives us:
 - % Δ in expected future cash-flow C_t given a unit increase in exposure of that cash-flow to a shock (in direction $\vec{\nu}$) today
 - counterpart to IRF for models with non-linear state dynamics

- Shock price elasticity $\epsilon_C (X, t; \vec{\nu}) - \epsilon_{S_iC} (X, t; \vec{\nu})$
 - % Δ in expected return (per unit of risk) of cash-flow C_t perceived by investor i given a unit increase in exposure of that cash-flow to a shock (in direction $\vec{\nu}$) today
 - counterpart to (investor-specific) Sharpe ratio for dividend strips

DSGE Models with Financial Frictions
June 20, 2018
Diagnostic Tools II

- Transition dynamics and valuation through altering cash flow exposure to shocks

- Shock exposure elasticity $\epsilon_C (X, t; \vec{\nu})$ gives us:
 - % Δ in expected future cash-flow C_t given a unit increase in exposure of that cash-flow to a shock (in direction $\vec{\nu}$) today
 - counterpart to IRF for models with non-linear state dynamics

- Shock price elasticity $\epsilon_C (X, t; \vec{\nu}) - \epsilon_{Si} C (X, t; \vec{\nu})$
 - % Δ in expected return (per unit of risk) of cash-flow C_t perceived by investor i given a unit increase in exposure of that cash-flow to a shock (in direction $\vec{\nu}$) today
 - counterpart to (investor-specific) Sharpe ratio for dividend strips

- Those shock exposure and price elasticities
 - depends on the current state X;
 - depends on the horizon t;
 - depends on the marginal investor i (for price elasticities).
What shocks do investors care about as measured by expected return compensation?

→ vary the shock direction $\tilde{\nu}$
What shocks do investors care about as measured by expected return compensation?
→ vary the shock direction $\tilde{\nu}$

How do these compensations vary across states and over horizons?
→ vary the initial state X and the time-horizon t
Diagnostic Tools II – Why do we care?

- What shocks do investors care about as measured by expected return compensation?
 → vary the shock direction $\tilde{\nu}$

- How do these compensations vary across states and over horizons?
 → vary the initial state X and the time-horizon t

- How severe are financial frictions?
 → how do shadow compensations differ across agents
Always vs. Occasionally Binding Constraints

- When is an always-binding-constraint assumption legitimate?
Always vs. Occasionally Binding Constraints

- When is an always-binding-constraint assumption legitimate?

- Economic setting of focus
 - Experts are the only producers (i.e. $a_h = -\infty$)
 - Skin-in-the-game constraint $\chi \geq \underline{\chi}$
 - TFP shocks only
 - EIS $\psi^{-1} = 1$
Always vs. Occasionally Binding Constraints

- When is an always-binding-constraint assumption legitimate?

- Economic setting of focus
 - Experts are the only producers (i.e. $a_h = -\infty$)
 - Skin-in-the-game constraint $\chi \geq \chi$
 - TFP shocks only
 - EIS $\psi^{-1} = 1$

- Compare
 1. homogeneous RRA ($\gamma_e = \gamma_h$) vs.
 2. heterogeneous RRA ($\gamma_e < \gamma_h$)
Always vs. Occasionally Binding Constraints

Expert’s risk-retention χ in the two models.

\[\chi (\gamma_c = \gamma_h = 3) \]

\[\chi (\gamma_c = 1, \gamma_h = 3) \]
Wealth share diffusion σ_w in the two models.

$\sigma_w(\gamma_c = \gamma_h = 3)$

$\sigma_w(\gamma_c = 1, \gamma_h = 3)$
Expert’s shadow risk prices π_e in the two models.
How do financial frictions affect agents’ attitudes about other shocks?
How do financial frictions affect agents’ attitudes about other shocks?

Economic setting of focus
- Experts are the only producers (i.e. $a_h = -\infty$)
- Skin-in-the-game constraint $\chi \geq \bar{\chi}$
- Shocks to TFP level, growth rate, and volatility
- RRA $\gamma = 3$, EIS $\psi^{-1} = 1$
How do financial frictions affect agents’ attitudes about other shocks?

Economic setting of focus
- Experts are the only producers (i.e. $a_h = -\infty$)
- Skin-in-the-game constraint $\chi \geq \chi$
- Shocks to TFP level, growth rate, and volatility
- RRA $\gamma = 3$, EIS $\psi^{-1} = 1$

Compare
1. model with frictions ($\chi = 0.5$) vs.
2. model without frictions ($\chi = 0$)
Expert’s and Household’s TFP risk prices $\pi_e^{(1)}, \pi_h^{(1)}$.

\[\pi_e : \text{TFP Shock} \]

\[\pi_h : \text{TFP Shock} \]
Other Shocks and Financial Frictions

Expert’s and Household’s volatility risk prices $\pi_e^{(3)}, \pi_h^{(3)}$.

π_e : Volatility Shock

π_h : Volatility Shock
Who are the “expert” agents in the economy – productive or risk-tolerant?
Productivity vs. Risk-Tolerance

- Who are the “expert” agents in the economy – productive or risk-tolerant?

- Economic setting of focus
 - Experts and households can both produce (i.e. \(a_e \geq a_h > -\infty \))
 - No equity-issuance \(\chi \equiv \chi = 1 \)
 - Shocks to TFP level, growth rate, and volatility
 - EIS \(\psi^{-1} = 1 \)
Who are the “expert” agents in the economy – productive or risk-tolerant?

Economic setting of focus
- Experts and households can both produce (i.e. $a_e \geq a_h > -\infty$)
- No equity-issuance $\chi \equiv \chi = 1$
- Shocks to TFP level, growth rate, and volatility
- EIS $\psi^{-1} = 1$

Compare
1. experts more productive ($a_e > a_h$ but $\gamma_e = \gamma_h$) vs.
2. experts more risk-tolerant ($\gamma_e < \gamma_h$ but $a_e = a_h$)
Capital distribution κ in the two models.
Productivity vs. Risk-Tolerance

Expert’s TFP risk price $\pi_e^{(1)}$ in the two models.

Note: only a_h and γ_h differ between the two models.
Productivity vs. Risk-Tolerance

- Previous approach akin to “opening the black-box”
 - Keep all parameters fixed except a_h and γ_h
 - Clean comparison of productivity versus risk-aversion
 - Obvious differences emerged
Previous approach akin to "opening the black-box"
- Keep all parameters fixed except a_h and γ_h
- Clean comparison of productivity versus risk-aversion
- Obvious differences emerged

Now, impose observational constraints to compare models
- Vary parameters across models to match desired empirical moments
- E.g., engineer two models with similar wealth distributions
- What distinguishes the models under this approach?
Expert’s TFP risk price $\pi_e^{(1)}$ in the two models.
TFP shock-exposure elasticities in the two models.

Perturbed variable: expert wealth share w_t
Conclusion / Next Steps

- Numerical approach: computation using GPU (instead of CPU)
- Consider additional types of financial constraints
- Analyze link between heterogenous preference models, heterogenous belief models, financial frictions’ models
- User-friendly web application to compare and contrast models
Efficiency units of capital k_t follow

$$ dk_t = k_t \left[(g_t + \iota_t - \delta) \, dt + \sqrt{s_t} \sigma \cdot dZ_t \right], \quad (1) $$

Exogenous state variables (s_t, g_t) follow

$$ dg_t = \lambda_g (\bar{g} - g_t) \, dt + \sqrt{s_t} \sigma_g \cdot dZ_t \quad (2) $$

$$ ds_t = \lambda_s (\bar{s} - s_t) \, dt + \sqrt{s_t} \sigma_s \cdot dZ_t \quad (3) $$

Adjustment costs: investment $\iota_t k_t \, dt$ costs $\Phi(\iota_t) k_t \, dt$ in output
Markets

- Capital is freely traded, at price q_t

 $$dq_t = q_t[\mu_{q,t} dt + \sigma_{q,t} \cdot dZ_t]$$ (4)

- Households facing dynamically complete markets, leading to SDF

 $$dS_{h,t} = -S_{h,t}[r_t dt + \pi_{h,t} \cdot dZ_t]$$ (5)

- Experts face skin-in-the-game constraint via minimum risk retention:

 $$\chi_t \geq \chi$$ (6)

 - χ_t is fraction of capital held by experts that is “retained”

- Experts SDF

 $$dS_{e,t} = -S_{e,t}[r_t dt + \pi_{e,t} \cdot dZ_t]$$ (7)
Agent i will solve the following problem:

$$U_{i,t} = \max_{\{k_{i} \geq 0, c_{i}, \theta_{i}, \iota_{i}\}} \mathbb{E} \left[\int_{t}^{+\infty} \varphi (c_{i,s}, U_{i,s}) \, ds \right]$$

s.t. $$\frac{dn_{i,t}}{n_{i,t}} = \left[\mu_{n,i,t} - \frac{c_{i,t}}{n_{i,t}} \right] dt + \sigma_{n,i,t} \cdot dZ_{t}$$

$$\mu_{n,i,t} = r_{t} + \frac{q_{t} k_{i,t}}{n_{i,t}} \left(\mu_{R,i,t} - r_{t} \right) + \theta_{i,t} \cdot \pi_{t}$$

$$\sigma_{n,i,t} = \frac{q_{t} k_{i,t}}{n_{i,t}} \sigma_{R,t} + \theta_{i,t}$$

$$\theta_{i,t} \in \Theta_{i,t}$$

Financial constraint set $\Theta_{i,t}$:

- $\Theta_{i,t} = \{0\}$: agent cannot issue “equity” securities
- $\Theta_{i,t} = \{(\chi_{t} - 1) \frac{q_{t} k_{i,t}}{n_{i,t}} \sigma_{R,t}, \chi_{t} \geq \chi\}$: “skin-in-the-game” constraint
- $\Theta_{i,t} = \mathbb{R}^{d}$: unconstrained agent
Numerical Implementation: Value Functions

Statement of the problem. Scaled value functions ξ_i solve PDEs like

$$0 = K_i + A_i \xi_i + B_i \cdot \partial_x \xi_i + \text{trace}[C_i C_i' \partial_{xx'} \xi_i], \quad x = (w, g, s, \varsigma),$$

where the coefficients are:

$$K_i = K_i(x, \xi_e, \xi_h, \partial_x \xi_e, \partial_x \xi_h)$$
$$A_i = A_i(x, \xi_e, \xi_h, \partial_x \xi_e, \partial_x \xi_h)$$
$$B_i = B_i(x, \xi_e, \xi_h, \partial_x \xi_e, \partial_x \xi_h)$$
$$C_i = C_i(x, \xi_e, \xi_h, \partial_x \xi_e, \partial_x \xi_h)$$

The dependence of A, B, C on (ξ_e, ξ_h) arises due to general equilibrium.

We solve this PDE system with a 2-step iterative approach:

- given coefficients, we solve the linear PDE and obtain $\{\xi_i\}_{i=e,h}$
- given PDE solution $\{\xi_i\}_{i=e,h}$, we update coefficients
Step 1. Augment the PDE with a “false transient,” which is an artificial time-derivative $\partial_t \xi_i$:

$$\partial_t \xi_i = K_i + A_i \xi_i + B_i \cdot \partial_x \xi_i + \text{trace}[C_i C'_i \partial_{xx'} \xi_i],$$

where

$$K_i = K_i(x, \xi_e, \xi_h, \partial_x \xi_e, \partial_x \xi_h)$$
$$A_i = A_i(x, \xi_e, \xi_h, \partial_x \xi_e, \partial_x \xi_h)$$
$$B_i = B_i(x, \xi_e, \xi_h, \partial_x \xi_e, \partial_x \xi_h)$$
$$C_i = C_i(x, \xi_e, \xi_h, \partial_x \xi_e, \partial_x \xi_h)$$
Step 2. Given an iterant or guess \((\xi^{(t)}_e, \xi^{(t)}_h)\), we substitute the coefficients \((K^{(t)}_i, A^{(t)}_i, B^{(t)}_i, C^{(t)}_i) \).

\[\partial_t \xi_i = K^{(t)}_i + A^{(t)}_i \xi_i + B^{(t)}_i \cdot \partial_x \xi_i + \text{trace}[C^{(t)}_i C^{(t)}_i', \partial_{xx'} \xi_i], \]

where

\[
\begin{align*}
K^{(t)}_i &= K_i(x, \xi^{(t)}_e, \xi^{(t)}_h, \partial_x \xi^{(t)}_e, \partial_x \xi^{(t)}_h) \\
A^{(t)}_i &= A_i(x, \xi^{(t)}_e, \xi^{(t)}_h, \partial_x \xi^{(t)}_e, \partial_x \xi^{(t)}_h) \\
B^{(t)}_i &= B_i(x, \xi^{(t)}_e, \xi^{(t)}_h, \partial_x \xi^{(t)}_e, \partial_x \xi^{(t)}_h) \\
C^{(t)}_i &= C_i(x, \xi^{(t)}_e, \xi^{(t)}_h, \partial_x \xi^{(t)}_e, \partial_x \xi^{(t)}_h)
\end{align*}
\]
Numerical Implementation: Value Functions

Step 3. Discretize the time derivatives and write all spatial derivatives in terms of $\xi_i^{(t+\Delta)}$ (“implicit”, as opposed to “explicit” scheme), i.e.,

$$
\frac{\xi_i^{(t+\Delta)} - \xi_i^{(t)}}{\Delta} = K_i^{(t)} + A_i^{(t)} \xi_i^{(t+\Delta)} + B_i^{(t)} \cdot \partial_x \xi_i^{(t+\Delta)} + \text{tr}[C_i^{(t)} C_i^{(t)'} \partial_{xx} \xi_i^{(t+\Delta)}],
$$

where

$$
K_i^{(t)} = K_i(x, \xi_e^{(t)}, \xi_h^{(t)}, \partial_x \xi_e^{(t)}, \partial_x \xi_h^{(t)})
$$

$$
A_i^{(t)} = A_i(x, \xi_e^{(t)}, \xi_h^{(t)}, \partial_x \xi_e^{(t)}, \partial_x \xi_h^{(t)})
$$

$$
B_i^{(t)} = B_i(x, \xi_e^{(t)}, \xi_h^{(t)}, \partial_x \xi_e^{(t)}, \partial_x \xi_h^{(t)})
$$

$$
C_i^{(t)} = C_i(x, \xi_e^{(t)}, \xi_h^{(t)}, \partial_x \xi_e^{(t)}, \partial_x \xi_h^{(t)})
$$

To insure scheme “monotonicity”,

- “Upwinding” for discretization of $\partial_x \xi_i^{(t+\Delta)}$;
- Cross-partial derivatives computed using $\xi_i^{(t)}$ and added to previous iterant $K_i^{(t)}$.
Numerical Implementation: Value Functions

Step 4. By discretizing the spatial derivatives $\partial_x \xi_i^{(t+\Delta)}$ and $\partial_{xx'} \xi_i^{(t+\Delta)}$, the PDE becomes a system of linear equations in the unknown value function at the discretization points:

$$\left[I - \Delta L_i^{(t)} \right] \xi_i^{(t+\Delta)} = \xi_i^{(t)} + \Delta K_i^{(t)}$$

Solve this system for $(\xi_e^{(t+\Delta)}, \xi_h^{(t+\Delta)})$.
Numerical Implementation: Value Functions

Computational Considerations.

- Brownian information structure implies $L_i^{(t)}$ is a highly sparse matrix, with $I - \Delta L_i^{(t)}$ diagonally dominant for Δ sufficiently small.

- Solving $\left[I - \Delta L_i^{(t)} \right] \xi_i^{(t+\Delta)} = \xi_i^{(t)} + \Delta K_i^{(t)}$:
 - direct approach: Pardiso (efficient LU decomposition, parallel computing, exact linear system solution)
 - iterative approach: conjugate gradient with different preconditioners, utilize initial guess from previous time iteration

- Explore numerical performance across examples of choice of Δ, choice of grid, number of chores, etc.
Numerical Implementation: Constraints

Statement of the problem. Capital distribution $\kappa \in [0, 1]$ and expert equity issuance $\chi \in [\underline{\chi}, 1]$ determine occasionally-binding constraints

$$0 = \min(1 - \kappa, -\alpha_h)$$

$$0 = \min(\chi - \underline{\chi}, \alpha_e),$$

where $\alpha_i := \mu_{R,i} - r - \pi \cdot \sigma_R$ is agent i’s endogenous premium on capital.

Economic intuition.

- Experts hold all capital ($\kappa = 1$) if and only if households obtain no premium for holding it ($\alpha_h < 0$)
- Experts issue as much equity as possible ($\chi = \underline{\chi}$) if and only if their inside equity premium exceeds the outside equity premium ($\alpha_e > 0$)
Numerical Implementation: Constraints

Variational inequalities. Algebraic equations on part of the state space (when constraints bind) and first-order non-linear elliptic PDEs on the complement (when constraints are slack).

\[
0 = \min(1 - \kappa, -\alpha_h)
\]

\[
0 = \min(\chi - \underline{\chi}, \alpha_e),
\]

where

\[
\alpha_h = F_h(x, \kappa, \partial_x \kappa, \chi, \partial_x \chi)
\]

\[
\alpha_e = F_e(x, \kappa, \partial_x \kappa, \chi, \partial_x \chi).
\]

Solution method.

- Explicit FD scheme with false transient and “CFL” condition

\[
\frac{\kappa^{t+\Delta} - \kappa^t}{\Delta} = \min \left(1 - \kappa^t, F_h(x, \kappa^t, \partial_x \kappa^t, \chi^t, \partial_x \chi^t)\right)
\]

- See Oberman (2006)
Consider a martingale perturbation H^s_t in direction ν

$$d \log H^s_t = -\frac{\|\nu(X_t)\|^2}{2} dt + \nu(X_t) \cdot dZ_t \quad 0 \leq t \leq s$$

$$d \log M_t = \mu_M(X_t) dt + \sigma_M(X_t) \cdot dZ_t$$

$$\epsilon_M(x, t) := \lim_{s \to 0} \frac{1}{s} \log \mathbb{E} \left[\frac{M_t H^s_t}{M_0} | X_0 = x \right]$$
Consider a martingale perturbation H^s_t in direction ν

$$d \log H^s_t = -\frac{||\nu(X_t)||^2}{2}dt + \nu(X_t) \cdot dZ_t \quad 0 \leq t \leq s$$

$$d \log M_t = \mu_M(X_t)dt + \sigma_M(X_t) \cdot dZ_t$$

$$\epsilon_M(x, t) := \lim_{s \to 0} \frac{1}{s} \log \mathbb{E} \left[\frac{M_t}{M_0} H^s_t | X_0 = x \right]$$

Applications for a cash-flow C_t received at time t

- Shock exposure elasticity $\epsilon_C(x, t)$;
- Shock cost elasticity $\epsilon_{SC}(x, t)$;
- Shock price elasticity $\epsilon_C(x, t) - \epsilon_{SC}(x, t)$
Diagnostic Tools II

- Consider a martingale perturbation H^s_t in direction ν

\[
d \log H^s_t = -\frac{||\nu(X_t)||^2}{2} dt + \nu(X_t) \cdot dZ_t \quad 0 \leq t \leq s
\]

\[
d \log M_t = \mu_M(X_t) dt + \sigma_M(X_t) \cdot dZ_t
\]

\[
\epsilon_M(x, t) : = \lim_{s \to 0} \frac{1}{s} \log \mathbb{E} \left[\frac{M_t}{M_0} H^s_t | X_0 = x \right]
\]

- Applications for a cash-flow C_t received at time t
 - Shock exposure elasticity $\epsilon_C(x, t)$;
 - Shock cost elasticity $\epsilon_{SC}(x, t)$;
 - Shock price elasticity $\epsilon_C(x, t) - \epsilon_{SC}(x, t)$

- Two interpretations
 - Altering the exposure of cashflow
 - Altering the probability distribution of cashflow