Comments on Hatfield and Kosec’s “Local Environmental Quality and Inter-Jurisdictional Spillovers”

James Sallee

University of Chicago, Harris

May 16, 2013
Constitutional Design and the Scope of Authority
Logic of approach

- Many things determine pollution (geography, industrial mix, GDP, traffic, degree of sprawl, ...)
 - Environmental policy is one factor
Logic of approach

- Many things determine pollution (geography, industrial mix, GDP, traffic, degree of sprawl,...)
 - Environmental policy is one factor

- Many things determine environmental policy (ideology/party, state politics, local business interests,...)
 - Jurisdictional structure is one factor
Logic of approach

- Many things determine pollution (geography, industrial mix, GDP, traffic, degree of sprawl,...)
 - Environmental policy is one factor

- Many things determine environmental policy (ideology/parties, state politics, local business interests,...)
 - Jurisdictional structure is one factor

- Many jurisdictions affect policy (cities, counties, states)
 - Counties are one factor
Logic of approach

- Many things determine county borders (geography, economic development, population flows, ...)
 - Streams are one factor
Logic of approach

- Many things determine county borders (geography, economic development, population flows,...)
 - Streams are one factor
- Variation in number of counties small
Logic of approach

- Many things determine county borders (geography, economic development, population flows,...)
 - Streams are one factor
- Variation in number of counties small
- Conclusion: streams \Rightarrow county borders \Rightarrow pollution logical
- But, *ex ante*, expect weak relationship
What does methodology identify?

“...we find that doubling the number of jurisdictions...results in a 7.4 point increase in the AQI...”
What does methodology identify?

“...we find that doubling the number of jurisdictions...results in a 7.4 point increase in the AQI...”

Streams in 1850 ⇒ Political institutions in 1900
⇒ Industrial mix in 1950 ⇒ Pollution in 2000

- Streams are not “shocks”, they are permanent
- Paper’s strategy must be identifying long-run impact of institutions; cannot think of estimates as telling us what changing jurisdictional structure today would do to pollution today
What does methodology identify?

“...we find that doubling the number of jurisdictions...results in a 7.4 point increase in the AQI...”

Streams in 1850 ⇒ Political institutions in 1900 ⇒ Industrial mix in 1950 ⇒ Pollution in 2000

- Streams are not “shocks”, they are permanent
- Paper’s strategy must be identifying long-run impact of institutions; cannot think of estimates as telling us what changing jurisdictional structure today would do to pollution today
- Paper could benefit from explicit discussion of this
- Reference Acemoglu, Johnson and Robinson (2001, etc.)
Long-run causal channels and IV

- If jurisdictional structure really important to public policy, it will affect many things (growth, population, etc.)
- Causal effect of streams on pollution may have nothing to do with environmental policy; unclear if this is test of Oates (1972)
Long-run causal channels and IV

• If jurisdictional structure really important to public policy, it will affect many things (growth, population, etc.)

• Causal effect of streams on pollution may have nothing to do with environmental policy; unclear if this is test of Oates (1972)

• Exclusion restriction: streams only affect pollution via environmental policy
Long-run causal channels and IV

- If jurisdictional structure really important to public policy, it will affect many things (growth, population, etc.)
- Causal effect of streams on pollution may have nothing to do with environmental policy; unclear if this is test of Oates (1972)

- Exclusion restriction: streams only affect pollution via environmental policy
Long-run causal channels and IV

- If jurisdictional structure really important to public policy, it will affect many things (growth, population, etc.)
- Causal effect of streams on pollution may have nothing to do with environmental policy; unclear if this is test of Oates (1972)
- Exclusion restriction: streams only affect pollution via environmental policy
- Streams have other effects: Baqir (2001), Cutler and Glaeser (1997), Hatfield and Kosec (2012)
- If streams cause other things (growth) that affect pollution, then exclusion restriction violated
Results are surprisingly strong

- I argue that causal effect of streams on pollution should be small

- But results are remarkably strong and robust
 - 30% of variation in number of counties explained by streams
 - Streams stronger predictor of number of counties than any other variable
 - Streams stronger predictor of pollution than income, population density, rivers (!), water area
 - Adding state FE has modest impact on stream coefficient

- I argue that effect of streams on pollution should be long run, work through political economy's effect on growth and industry
- Thus, controlling for growth should impact coefficient
- Coefficient on streams changes very little when earnings and density added
Results are surprisingly strong

- I argue that causal effect of streams on pollution should be small
- But results are **remarkably** strong and robust
 - 30% of variation in no. counties explained by streams
 - Streams stronger predictor of no. counties than any other variable
 - Streams stronger predictor of pollution than income, population density, rivers (!), water area
 - Adding state FE has modest impact on stream coefficient
Results are surprisingly strong

- I argue that causal effect of streams on pollution should be small
- But results are **remarkably** strong and robust
 - 30% of variation in no. counties explained by streams
 - Streams stronger predictor of no. counties than any other variable
 - Streams stronger predictor of pollution than income, population density, rivers (!), water area
 - Adding state FE has modest impact on stream coefficient

- I argue that effect of streams on pollution should be long run, work through political economy’s effect on growth and industry
- Thus, controlling for growth should impact coefficient
Results are surprisingly strong

- I argue that causal effect of streams on pollution should be small
- But results are **remarkably** strong and robust
 - 30% of variation in no. counties explained by streams
 - Streams stronger predictor of no. counties than any other variable
 - Streams stronger predictor of pollution than income, population density, rivers (!), water area
 - Adding state FE has modest impact on stream coefficient

- I argue that effect of streams on pollution should be long run, work through political economy’s effect on growth and industry
- Thus, controlling for growth should impact coefficient
- Coefficient on streams changes very little when earnings and density added
Results are surprisingly strong

\[\text{number counties in MSA} = \alpha + \beta \text{ total miles of streams in MSA} + \epsilon \]
Results are surprisingly strong

number counties in MSA = $\alpha + \beta$ total miles of streams in MSA + ϵ

- Is there a mechanical relationship?
- Bigger MSA’s have more streams (even if topography uniform) and more counties
 - E.g., Chicago MSA has 14 counties; Peoria MSA has 5; probably more waterways in 14-county Chicago area
- Other controls are averages; this explains why they don’t matter
Results are surprisingly strong

\[
\text{number counties in MSA} = \alpha + \beta \text{ total miles of streams in MSA} + \epsilon
\]

- Is there a mechanical relationship?
- Bigger MSA’s have more streams (even if topography uniform) and more counties
 - E.g., Chicago MSA has 14 counties; Peoria MSA has 5; probably more waterways in 14-county Chicago area
- Other controls are averages; this explains why they don’t matter

- If mechanical problem, normalizing by area or population should matter
- Log square area control has no effect
Results are surprisingly strong

\[
\text{number counties in MSA} = \alpha + \beta \text{ total miles of streams in MSA} + \epsilon
\]

- Is there a mechanical relationship?
- Bigger MSA’s have more streams (even if topography uniform) and more counties
 - E.g., Chicago MSA has 14 counties; Peoria MSA has 5; probably more waterways in 14-county Chicago area
- Other controls are averages; this explains why they don’t matter
- If mechanical problem, normalizing by area or population should matter
- Log square area control has no effect... but paper uses 1970 area
MSA definitions change over time

Table: Number of counties in Houston MSA and Phoenix MSA over time

<table>
<thead>
<tr>
<th></th>
<th>Houston</th>
<th>Phoenix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Economic growth may cause MSA to expand. Economic growth causes pollution. MSA expansion increases both total stream mileage and number of counties in a mechanical fashion (explains first stage) and this is correlated with growth (explains second stage).
MSA definitions change over time

Table: Number of counties in Houston MSA and Phoenix MSA over time

<table>
<thead>
<tr>
<th>Year</th>
<th>Houston</th>
<th>Phoenix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1971</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Economic growth may cause MSA to expand.

Economic growth causes pollution.

MSA expansion increases both total stream mileage and number of counties in mechanical fashion (explains first stage) and this is correlated with growth (explains second stage).
MSA definitions change over time

Table: Number of counties in Houston MSA and Phoenix MSA over time

<table>
<thead>
<tr>
<th>Year</th>
<th>Houston</th>
<th>Phoenix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1971</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>1981</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

- Economic growth may cause MSA to expand
- Economic growth causes pollution
- MSA expansion increases both total stream mileage and number of counties in a mechanical fashion (explains first stage) and this is correlated with growth (explains second stage)
MSA definitions change over time

Table: Number of counties in Houston MSA and Phoenix MSA over time

<table>
<thead>
<tr>
<th>Year</th>
<th>Houston</th>
<th>Phoenix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1971</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>1981</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>1990</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>
MSA definitions change over time

Table: Number of counties in Houston MSA and Phoenix MSA over time

<table>
<thead>
<tr>
<th>Year</th>
<th>Houston</th>
<th>Phoenix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1971</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>1981</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>1990</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>2009</td>
<td>10</td>
<td>2</td>
</tr>
</tbody>
</table>

- Economic growth may cause MSA to expand
- Economic growth causes pollution
MSA definitions change over time

Table: Number of counties in Houston MSA and Phoenix MSA over time

<table>
<thead>
<tr>
<th></th>
<th>Houston</th>
<th>Phoenix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1971</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>1981</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>1990</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>2009</td>
<td>10</td>
<td>2</td>
</tr>
</tbody>
</table>

- Economic growth may cause MSA to expand
- Economic growth causes pollution
- MSA expansion increases both total stream mileage and number of counties in mechanical fashion (explains first stage) and this is correlated with growth (explains second stage)
What is the source of variation?

- IV is plausible identification strategy
- But, need to “see” the data to improve transparency
- Inside of a state, what types of MSA’s have more or fewer counties?
- Are we just comparing small and large cities?
- If not, how can correlations be so strong?
Standard errors are very surprising

Table: Standard error from OLS and IV regressions

<table>
<thead>
<tr>
<th>Column</th>
<th>OLS (Table 2)</th>
<th>IV (Table 3)</th>
<th>First-stage R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1.21)</td>
<td>(2.73)</td>
<td>0.30</td>
</tr>
<tr>
<td>2</td>
<td>(1.54)</td>
<td>(1.55)</td>
<td>0.66</td>
</tr>
<tr>
<td>3</td>
<td>(1.43)</td>
<td>(1.47)</td>
<td>0.66</td>
</tr>
<tr>
<td>4</td>
<td>(1.37)</td>
<td>(1.38)</td>
<td>0.69</td>
</tr>
</tbody>
</table>

- IV standard error = OLS standard \Rightarrow first stage $R^2=1$
- IV standard error should be larger in inverse proportion to the R^2 in the first stage
Other comments

- Should counties be so important? What about using number of municipalities?
- Why log the number of counties? (With minimal variation, should be able to control for each county size nonparametrically)
- Why is elevation variance a control instead of an IV?
- Does it matter that Clean Air Act regulates at county level? (Small counties more likely to exceed limit on average; large counties more likely to exceed limit for at least one point?)
- Conceptually, why is number of counties not normalized by population or landmass the right metric?