Optimal Tax Progressivity with Age-Dependent Taxation

Jonathan Heathcote
Federal Reserve Bank of Minneapolis

Kjetil Storesletten
University of Oslo

Gianluca Violante
Princeton University

BFI Taxation and Fiscal Policy Conference, May 18 2018
How progressive should labor income taxation be?

- Arguments in favor of progressivity:
 - Redistribution with respect to unequal initial conditions
 - Public insurance of privately-uninsurable life-cycle shocks
How progressive should labor income taxation be?

• Arguments in favor of progressivity:
 ▶ Redistribution with respect to unequal initial conditions
 ▶ Public insurance of privately-uninsurable life-cycle shocks

• Arguments against progressivity:
 ▶ Labor supply distortion
 ▶ Human capital investment distortion
HSV 2017

- Parametric tax-transfer system

\[T(y) = y - \lambda y^{1-\tau} \]

- \(\tau > 0 \) \(\Rightarrow \) progressive system: \(T'(y) > \frac{T(y)}{y} \)

- Function closely approximates actual US system

- Preserves tractability \(\Rightarrow \) progressivity drivers transparent
• Parametric tax-transfer system

\[T(y) = y - \lambda y^{1-\tau} \]

- \(\tau > 0 \) \implies \text{progressive system:} \quad T'(y) > \frac{T(y)}{y}
- Function closely approximates actual US system
- Preserves tractability \implies \text{progressivity drivers transparent}

• But is this form too restrictive?

- Static setting: best policy in class closely replicates Mirrlees:
 - Heathcote and Tsujiyama, 2018

- Dynamic setting: maybe welfare gains if taxes age-varying:
 - Weinzierl 2009, Farhi & Werning 2013, Golosov, Troshkin & Tsyvinski, 2016
This Paper

- Generalize HSV 2017 to allow age variation in tax system:

\[T_a(y) = y - \lambda_a y^{1-\tau_a} \]
This Paper

• Generalize HSV 2017 to allow age variation in tax system:

\[T_a(y) = y - \lambda_a y^{1-\tau_a} \]

• Model ingredients:

1. differential diligence & learning ability \[\text{[ex-ante heter.]}\]

2. life-cycle labor productivity shocks: some uninsurable, some privately insurable \[\text{[ex-post heter.]}\]
This Paper

• Generalize HSV 2017 to allow age variation in tax system:

\[T_a(y) = y - \lambda_a y^{1-\tau_a} \]

• Model ingredients:

1. differential diligence & learning ability [ex-ante heter.]
2. life-cycle labor productivity shocks: some uninsurable, some privately insurable [ex-post heter.]
3. flexible labor supply
4. skill investment
This Paper

• Generalize HSV 2017 to allow age variation in tax system:

\[T_a(y) = y - \lambda_a y^{1-\tau_a} \]

• Model ingredients:

1. differential diligence & learning ability [ex-ante heter.]

2. life-cycle labor productivity shocks: some uninsurable, some privately insurable [ex-post heter.]

3. flexible labor supply

4. skill investment

5. government expenditures valued by households
MODEL
Demographics and Preferences

- **Perpetual youth** demographics with constant survival probability δ.

- **Preferences** over consumption (c), hours (h), publicly-provided goods (G), and skill-investment (s) effort:

$$U_i = -v_i(s_i) + \mathbb{E}_0 \sum_{a=0}^{\infty} (\beta \delta)^a u_i(c_{ia}, h_{ia}, G)$$
Demographics and Preferences

- **Perpetual youth** demographics with constant survival probability δ

- **Preferences** over consumption (c), hours (h), publicly-provided goods (G), and skill-investment (s) effort:

 $$U_i = -v_i(s_i) + \mathbb{E}_0 \sum_{a=0}^{\infty} (\beta \delta)^a u_i(c_{ia}, h_{ia}, G)$$

 $$v_i(s_i) = \frac{1}{(\kappa_i)^{1/\psi}} \cdot \frac{s_i^{1+1/\psi}}{1 + 1/\psi}$$

 $$\kappa_i \sim \text{Exp}(1)$$

 $$u_i(c_{ia}, h_{ia}, G) = \log c_{ia} - \frac{\exp [(1 + \sigma) \varphi_i]}{1 + \sigma} (h_{ia})^{1+\sigma} + \chi \log G$$

 $$\varphi_i \sim \mathcal{N} \left(\frac{\nu_\varphi}{2}, \nu_\varphi \right)$$
Individual Wages and Earnings

\[
\log z_{ia} = x_a + \alpha_{ia} + \varepsilon_{ia}
\]

• \(x_a\) deterministic age-productivity profile

 \[\alpha_{ia} = \alpha_{i,a-1} + \omega_{ia}, \quad \omega_{ia} \sim \mathcal{N} \left(-\frac{v_\omega}{2}, v_\omega \right) \quad \text{[perm. unins.]}\]

 \[\varepsilon_{ia} \sim \mathcal{N} \left(-\frac{v_{\varepsilon,a}}{2}, v_{\varepsilon,a} \right) \quad \text{[private insurance]}\]

• Pre-government earnings:

 \[y_{ia} = p(s_i) \times \exp(x_a) \times \exp(\alpha_{ia} + \varepsilon_{ia}) \times h_{ia}\]

 - skill price
 - age-productivity profile
 - efficiency
 - hours

• Within-period insurance against \(\varepsilon\)

• No asset trade between periods (work in progress)
Technology

• Aggregate effective hours by skill type, \(N(s) \)

• Output a CES aggregator over continuum of skill types:

\[
Y = \left[\int_0^\infty N(s) \frac{\theta-1}{\theta} ds \right]^{\frac{\theta}{\theta-1}}
\]

• Skill price: \(p(s) = \text{marginal product of } N(s) \)

\[
\log p(s) = \frac{1}{\theta} \log Y - \frac{1}{\theta} \log [N(s)]
\]

• Aggregate resource constraint:

\[
Y = \int_0^1 (1 - \delta) \sum_{a=0}^{\infty} \delta^a c_i d + G
\]
Government

• Government budget constraint (no government debt):

\[G = (1 - \delta) \sum_{a=0}^{\infty} \delta^a \int_0^1 \left[y_i - \lambda_a y_i^{1-\tau_a} \right] di \]

• Government chooses sequence \(\{\lambda_a, \tau_a\}_{a=0}^{\infty} \), and \(G \)

• Equivalently, government chooses \(g \equiv \frac{G}{Y} \)
Equilibrium Allocations

\[
\log c(\alpha, \varphi, s) = \log \lambda_a + \frac{\log(1 - \tau_a)}{1 + \hat{\sigma}_a} + (1 - \tau_a) \left(\log p(s) + x_a + \alpha - \varphi \right)
\]

\[
\log h(\varphi, \varepsilon) = \frac{\log(1 - \tau_a)}{(1 + \hat{\sigma}_a)(1 - \tau_a)} - \varphi + \frac{\varepsilon}{\hat{\sigma}_a}
\]

- \(\frac{1}{\hat{\sigma}_a} = \frac{1 - \tau_a}{\sigma + \tau_a}\) is the tax-modified Frisch elasticity
Skill Prices and Choices

• Skill price has Mincerian form:

$$\log p(s) = \pi_0(\bar{\tau}) + \pi_1(\bar{\tau}) s(\kappa; \bar{\tau})$$

• Optimal skill investment linear in κ;

$$s(\kappa; \bar{\tau}) = [(1 - \bar{\tau}) \pi_1(\bar{\tau})]^\psi \cdot \kappa$$

where $\bar{\tau} = (1 - \beta \delta) \sum_{a=0}^{\infty} (\beta \delta)^a \tau_a$

• Equilibrium:

$$\pi_1(\bar{\tau}) = \left(\frac{1}{\theta} \right)^{\frac{1}{1+\psi}} (1 - \bar{\tau})^{-\frac{\psi}{1+\psi}}$$

$$s(\kappa; \bar{\tau}) = \left(\frac{1 - \bar{\tau}}{\theta} \right)^{\frac{\psi}{1+\psi}} \cdot \kappa$$

• Distribution of $p(s)$ is Pareto with parameter θ
SOCIAL WELFARE
Social Welfare Function

- Planner chooses policy \((g, \{\tau_a, \lambda_a\}) \) once and for all, subject to balanced budget.

- Planner puts equal weight on all currently alive agents, discounts utility \(U \) of future cohorts at rate \(\beta \).

- Start with policy that maximizes steady state welfare.

- Then consider policy that maximizes welfare including transition.

- Easy to optimize over large vector of policy choices because social welfare has a closed-form.
Optimal Policy

1. Optimal public good expenditure given by

\[g^* = \frac{\chi}{1 + \chi} \]
Optimal Policy

1. Optimal public good expenditure given by

\[g^* = \frac{\chi}{1 + \chi} \]

2. Given any profile \(\{ \tau_a \} \), optimal profile \(\{ \lambda_a^* \} \) equates average consumption by age.
Optimal Policy

1. Optimal public good expenditure given by

\[g^* = \frac{\chi}{1 + \chi} \]

2. Given any profile \(\{\tau_a\} \), optimal profile \(\{\lambda_a^*\} \) equates average consumption by age

3. Optimal \(\{\tau_a^*\} \) and \(\{\lambda_a^*\} \) are age-invariant if:
 (a) \(v_\omega = 0 \): no uninsurable risk
 (b) flat \(\{x_a\} \) efficiency profile
 (c) \(\beta \to 1 \), and
 (d) \(v_{\varepsilon,a} \) age-invariant
Optimal Policy

1. Optimal public good expenditure given by

\[g^* = \frac{\chi}{1 + \chi} \]

2. Given any profile \(\{\tau_a\} \), optimal profile \(\{\lambda_a^*\} \) equates average consumption by age.

3. Optimal \(\{\tau_a^*\} \) and \(\{\lambda_a^*\} \) are age-invariant if:
 (a) \(v_\omega = 0 \): no uninsurable risk
 (b) flat \(\{x_a\} \) efficiency profile
 (c) \(\beta \to 1 \), and
 (d) \(v_{\varepsilon,a} \) age-invariant

4. If, in addition, \(\theta = \infty \) and \(v_\omega = v_\varepsilon = 0 \), then optimal progressivity is

\[\tau_a = -\chi \]
Optimal Age-Varging Policy: Steady State

- Take as a baseline a specification in which the optimal $\{\tau^*_a\}$ is flat

- **RISK CHANNEL**
 Permanent uninsurable risk ($v_\omega > 0$) implies optimal profiles $\{\tau^*_a\}$ and $\{\lambda^*_a\}$ increasing in age.

- **LIFE-CYCLE PROFILE CHANNEL**
 Upward-sloping age efficiency profile $\{x_a\}$ implies decreasing optimal profiles $\{\tau^*_a\}$ and $\{\lambda^*_a\}$

- **DISCOUNTING CHANNEL**
 Lower β implies steeper optimal profiles $\{\tau^*_a\}$ and $\{\lambda^*_a\}$

- **INSURANCE CHANNEL**
 Insurable risk $\{v_{\in\varepsilon,a}\}$ rising with age implies declining optimal $\{\tau^*_a\}$ and $\{\lambda^*_a\}$
QUANTITATIVE IMPLICATIONS
Parameterization

- Parameter vector \(\{ \chi, \sigma, \psi, \theta, v_\varphi, v_\omega \} \)

- Assume observed \(G/Y = 0.19 = g^* \) \(\rightarrow \chi = 0.233 \)

- Frisch elasticity (micro-evidence \(\sim 0.5 \)) \(\rightarrow \sigma = 2 \)

- Price-elasticity of skill investment \(\rightarrow \psi = 0.65 \)

\[
\begin{align*}
\text{var}(\log h) & \rightarrow v_\varphi = 0.035 \\
\text{var}^0(\log c) & \rightarrow \theta = 3.12 \\
\text{cov}(\log w, \log c) & \rightarrow v_\omega = 0.003 \\
\text{cov}(\log w, \log h) & \rightarrow v_{\varepsilon,a} = 0 \quad \text{(for today)}
\end{align*}
\]

- Life-cycle profile \(\{ x_a \} \) estimated from PSID
Discounting Channel

\[v_\omega = 0, \{x_a\} \text{ flat, } \beta = 0.95 \]
Risk Channel

\[\nu_w > 0, \ \{x_a\} \text{ flat, } \beta = 1.0 \text{ (no discounting channel)} \]
Add Life Cycle Channel

$v_\omega > 0$, \(\{x_\omega\} \) rising, \(\beta = 1 \)
$v_\omega > 0$, $\{x_a\}$ rising, $\beta = 0.95$
$v_\omega > 0, \{x_\alpha\} \text{ rising}, \beta = 0.95, \tau_{-1} = 0.181$
Lessons

• Distinct roles for λ_a and τ_a
 ▶ Progressivity τ_a key for skill investment and labor supply distortions, and for redistribution / insurance within age groups
 ▶ Tax level λ_a delivers redistribution across age groups

• Forces for and against increasing progressivity with age offset:
 ▶ Rising labor productivity with age + rising insurable risk
 \Rightarrow want progressivity to decline with age
 ▶ Permanent uninsurable risk + discounting in skill investment
 \Rightarrow want progressivity to increase with age

• Plan to explore how optimal policy changes once we introduce savings choice