Consumption and House Prices in the Great Recession: Model Meets Evidence

Greg Kaplan Kurt Mitman Gianluca Violante

MFM
9-10 March, 2017
Outline

1. Overview

2. Model

3. Questions
 Q1: What shock(s) drove the boom-bust in p_h?
 Q2: How does the fall in p_h transmit to C?
 Q3: Could a debt-forgiveness policy have cushioned the bust?

4. Further evidence

5. Conclusions

6. Appendix
Three questions

1. What shock(s) drove the boom-bust in p_h?
 - Expectations about future growth in p_h
 - Credit conditions important for homeownership, leverage and foreclosure

Kaplan, Moll and Violante (2017)
Three questions

1. What shock(s) drove the boom-bust in p_h?

 • Expectations about future growth in p_h
 • Credit conditions important for homeownership, leverage and foreclosure

2. How does the fall in p_H transmit to C?

 • Mostly a wealth effect, not collateral effect

Kaplan, Moll and Violante (2017)
Three questions

1. What shock(s) drove the boom-bust in p_h?
 - Expectations about future growth in p_h
 - Credit conditions important for homeownership, leverage and foreclosure

2. How does the fall in p_H transmit to C?
 - Mostly a wealth effect, not collateral effect

3. Could a debt-forgiveness policy have cushioned the bust?
 - Big effect on foreclosures
 - Negligible effect on p_h and C
Methodology

• Model: aggregate shocks move equilibrium p_h

Kaplan, Moll and Violante (2017)
Methodology

• Model: aggregate shocks move equilibrium p_h

• Parameterize: match cross-sectional and lifecycle micro data

Kaplan, Moll and Violante (2017)
Methodology

- Model: aggregate shocks move equilibrium p_h
- Parameterize: match cross-sectional and lifecycle micro data
- Simulate boom-bust
- Compare with aggregate time-series data
 - House prices
 - Consumption
 - Rent-price ratio
 - Home ownership
 - Leverage
 - Foreclosures
 - Compare against micro data
Methodology

- Model: aggregate shocks move equilibrium p_h
- Parameterize: match cross-sectional and lifecycle micro data
- Simulate boom-bust
- Compare with aggregate time-series data
 - House prices
 - Consumption
 - Rent-price ratio
 - Home ownership
 - Leverage
 - Foreclosures
- Compare against micro data
- Counterfactuals to address our questions
Outline

1. Overview

2. Model

3. Questions
 Q1: What shock(s) drove the boom-bust in \(p_h \)?
 Q2: How does the fall in \(p_h \) transmit to \(C \)?
 Q3: Could a debt-forgiveness policy have cushioned the bust?

4. Further evidence

5. Conclusions

6. Appendix
Model

Demographics

• OLG lifecycle economy with work & retirement

Endowments

• Workers face uninsurable risk in individual earnings y

Preferences

• Utility over nondurable c and housing services h

Housing

• Finite number of house sizes $h \in \mathcal{H}$
• Households can buy a unit of h at price p_h, or rent it at rate ρ
• Linear transaction cost $\kappa_h \cdot (p_h h)$ for sellers

Kaplan, Moll and Violante (2017)
Financial instruments

Liquid saving \((b > 0)\): one-period bond, exogenous interest rate \(r_b\) (fixed)
Financial instruments

Liquid saving \((b > 0)\): one-period bond, exogenous interest rate \(r_b\) (fixed)

Mortgages \((m)\): long-term, fixed-rate debt contract

- Price schedule \(q_j(h, m, b, y)\) set by competitive banking sector
- Amortized over remaining lifetime at rate \(r_b (1 + \iota)\)
- Refinancing option available (cash-out) at cost \(\kappa_m\)
- Max Loan-to-Value at origination only \(m \leq \lambda^m p_h h\)
- Max Payment-to-Income at origination only \(\pi \leq \lambda^\pi y\)

Kaplan, Moll and Violante (2017)
Financial instruments

Liquid saving \((b > 0)\): one-period bond, exogenous interest rate \(r_b\) (fixed)

Mortgages \((m)\): long-term, fixed-rate debt contract

- Price schedule \(q_j(h, m, b, y)\) set by competitive banking sector
- Amortized over remaining lifetime at rate \(r_b (1 + \nu)\)
- Refinancing option available (cash-out) at cost \(\kappa_m\)
- Max Loan-to-Value at origination only \(m \leq \lambda^m p_h h\)
- Max Payment-to-Income at origination only \(\pi \leq \lambda^\pi y\)

Foreclosure

- Default on mortgage debt: incur a utility loss
Financial instruments

Liquid saving \((b > 0)\): one-period bond, exogenous interest rate \(r_b\) (fixed)

Mortgages \((m)\): long-term, fixed-rate debt contract

- Price schedule \(q_j(h, m, b, y)\) set by competitive banking sector
- Amortized over remaining lifetime at rate \(r_b (1 + \nu)\)
- Refinancing option available (cash-out) at cost \(\kappa_m\)
- Max Loan-to-Value at origination only \(m \leq \lambda^m p_h h\)
- Max Payment-to-Income at origination only \(\pi \leq \lambda^\pi y\)

Foreclosure

- Default on mortgage debt: incur a utility loss

HELOCs \((b < 0)\)

- One-period borrowing \((b \geq -\lambda_b p_h h)\), at rate \(r_b (1 + \nu)\), non-defaultable
- Collateralized by housing, \(b \geq -\lambda^b p_h h\)
Closing the model

Final good sector

• \(Y = \bar{Z} \bar{N} \rightarrow w = Z \)

Construction sector

• Labor + housing permits → aggregate housing investments \(I(p_h) \)

Rental sector

• Brobury housing from sellers and rents them out, or vice-versa, sells rental units to home buyers

• Operating cost \(\psi \) per unit of housing owned and rented out

• Zero-profit condition yields equilibrium rental rate \(\rho \)

Government

• Taxes workers (with mortgage interest deduction) and properties, sells land permits, and pays SS benefits to retirees
Aggregate shocks

1. Aggregate labor income: Z

2. Credit conditions: (i) credit limits ($\lambda^m, \lambda^b, \lambda^\pi$)
 (ii) intermediation wedge ι

Kaplan, Moll and Violante (2017)
Aggregate shocks

1. Aggregate labor income: Z

2. Credit conditions: (i) credit limits ($\lambda^m, \lambda^b, \lambda^\pi$)
 (ii) intermediation wedge ι

3. Beliefs / News about future housing demand:

 Three regimes for ϕ (share of housing services in u):

 (a) ϕ_L: low housing share and unlikely transition to ϕ_H
 (b) ϕ_L^*: low housing share and likely transition to ϕ_H
 (c) ϕ_H: high housing share

 Boom-Bust: shift from (a) to (b), and back to (a)

Kaplan, Moll and Violante (2017)
Shock Processes

1. **Aggr. labor income**: NIPA wages & salaries per capita

2. **Credit conditions**: λ_m: 95% → 110%, λ_b: 20% → 30%
 λ_π: 25% → 60%, ι^m: 100 BP → 75 BP

3. **Beliefs**: Case-Shiller-Thompson & Burnside-Eichenbaum-Rebelo
Shock Processes

1. **Aggr. labor income**: NIPA wages & salaries per capita

2. **Credit conditions**: \(\lambda_m: 95\% \rightarrow 110\%, \lambda_b: 20\% \rightarrow 30\% \)
 \(\lambda_\pi: 25\% \rightarrow 60\%, \lambda^m: 100 \text{ BP} \rightarrow 75 \text{ BP} \)

3. **Beliefs**: Case-Shiller-Thompson & Burnside-Eichenbaum-Rebelo

 - The shift in beliefs hits in 2001 and reverts back in 2007
3. Questions
 Q1: What shock(s) drove the boom-bust in \(p_h \)?
 Q2: How does the fall in \(p_h \) transmit to \(C \)?
 Q3: Could a debt-forgiveness policy have cushioned the bust?
1. Overview

2. Model

3. Questions
 Q1: What shock(s) drove the boom-bust in p_h?
 Q2: How does the fall in p_h transmit to C?
 Q3: Could a debt-forgiveness policy have cushioned the bust?

4. Further evidence

5. Conclusions

6. Appendix
Consumption and house price dynamics

House Price

Year	2000	2005	2010	2015
Data | 0.95 | 1.05 | 1.1 | 1.1
Model | 0.9 | 1 | 1.05 | 1.1

Consumption

Year	2000	2005	2010	2015
Data | 0.8 | 0.9 | 1 | 1
Model | 0.9 | 1 | 1.05 | 1

Kaplan, Moll and Violante (2017)
Consumption and house price dynamics

Kaplan, Moll and Violante (2017)
Consumption and house price dynamics

Kaplan, Moll and Violante (2017)
Consumption and house price dynamics

House Price

- Benchmark
- Belief Only
- Income Only
- Credit Only

Consumption

- Benchmark
- Belief Only
- Income Only
- Credit Only

Kaplan, Moll and Violante (2017)
Beliefs vs actual change in preferences

House Price

Year
0.8
0.9
1
1.1
1.2
1.3

Consumption

Year
0.9
0.95
1
1.05
1.1

• Preference shock: similar rise in p_h, but C falls!

Kaplan, Moll and Violante (2017)
Dynamics of rent-price ratio

Kaplan, Moll and Violante (2017)
Dynamics of rent-price ratio

\[\rho = \psi + p_h - \left(\frac{1 - \delta_h - \tau_h}{1 + r^b} \right) \mathbb{E}_{p_h} [p'_h] \]

- Belief about future appreciation shared by investment company
Dynamics of home ownership

Kaplan, Moll and Violante (2017)
• Loosening of credit limits drives rise in home-ownership
• Households constrained in tenure choice, not in housing choice

Kaplan, Moll and Violante (2017)
Dynamics of leverage and foreclosure

Leverage

Foreclosure rate

Kaplan, Moll and Violante (2017)
Dynamics of leverage and foreclosure

- Credit loosening is key for constant leverage pre-boom
- Interaction between beliefs and credit important for foreclosure

Kaplan, Moll and Violante (2017)
Why credit shock does not affect ρ_h

- Max LTV/PTI ratios affect housing demand if renters (extensive margin) or home-owners (intensive margin) are constrained in housing choice (not tenure choice)

1. BOOM: Rental market relaxes these constraints
2. BUST: Long-term mortgage debt relaxes these constraints
Why credit shock does not affect ρ_h

- Max LTV/PTI ratios affect housing demand if renters (extensive margin) or home-owners (intensive margin) are constrained in housing choice (not tenure choice)

 1. BOOM: Rental market relaxes these constraints
 2. BUST: Long-term mortgage debt relaxes these constraints

- Are we missing the ‘credit supply’ aspect of the shock, i.e. cheap credit flowing to low-quality borrowers?

- No: endogenous relaxation in lending standards in response to belief-driven boom

Kaplan, Moll and Violante (2017)
Cheaper credit for ‘low-quality’ borrowers

- Lenders also expect prices to rise and default rates to fall

Kaplan, Moll and Violante (2017)
Outline

1. Overview

2. Model

3. Questions
 Q1: What shock(s) drove the boom-bust in p_h?
 Q2: How does the fall in p_h transmit to C?
 Q3: Could a debt-forgiveness policy have cushioned the bust?

4. Further evidence

5. Conclusions

6. Appendix
Deleveraging or wealth effect in the bust?

Deleveraging: WEAK

Wealth effect: STRONG

Kaplan, Moll and Violante (2017)
Outline

1. Overview

2. Model

3. Questions
 Q1: What shock(s) drove the boom-bust in p_h?
 Q2: How does the fall in p_h transmit to C?
 Q3: Could a debt-forgiveness policy have cushioned the bust?

4. Further evidence

5. Conclusions

6. Appendix
Counterfactual principal reduction program

All homeowners with LTV >95%: forgive excess debt
Counterfactual principal reduction program

All homeowners with LTV >95%: forgive excess debt

- Beneficiaries account for small share of C

Kaplan, Moll and Violante (2017)
Outline

1. Overview

2. Model

3. Questions
 Q1: What shock(s) drove the boom-bust in p_h?
 Q2: How does the fall in p_h transmit to C?
 Q3: Could a debt-forgiveness policy have cushioned the bust?

4. Further evidence

5. Conclusions

6. Appendix
Credit growth

- Mian-Sufi: credit growth concentrated in low-income groups
- Foote et al.: no, equally distributed across income groups
Credit growth

• Mian-Sufi: credit growth concentrated in low-income groups

• Foote et al.: no, equally distributed across income groups

• Low-income hh switch from rent to buy, high-income hh upsize
Moretgage origination

- **Mian-Sufi**: mortgage origin. concentrated in subprime groups

- **Adelino et al.**: no, equally distributed across groups
Moregtridge origination

- **Mian-Sufi**: mortgage origin. concentrated in subprime groups
- **Adelino et al.**: no, equally distributed across groups

- Young hh switch from rent to buy, older hh upsize

Share of Debt Above Median Below Median Default Risk Shares of Originated Mortgage Debt

<table>
<thead>
<tr>
<th>Year</th>
<th>Above Median</th>
<th>Below Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>17</td>
<td>28</td>
</tr>
<tr>
<td>2004</td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td>2005</td>
<td>17</td>
<td>30</td>
</tr>
<tr>
<td>2006</td>
<td>18</td>
<td>29</td>
</tr>
</tbody>
</table>

Shares of Originated Mortgage Debt

- **2001**: Above Median, Below Median
- **2007**: Above Median, Below Median
Foreclosures

- Mian-Sufi: foreclosures concentrated in subprime groups

- Albanesi et al.: no, proportionally rising more for other groups

![Graph showing share of foreclosures by income quintiles over years 2004 to 2012.](image)
Foreclosures

- Mian-Sufi: foreclosures concentrated in subprime groups
- Albanesi et al.: no, proportionally rising more for other groups

- Everyone levers up, including middle-income households
Outline

1. Overview

2. Model

3. Questions
 Q1: What shock(s) drove the boom-bust in p_h?
 Q2: How does the fall in p_h transmit to C?
 Q3: Could a debt-forgiveness policy have cushioned the bust?

4. Further evidence

5. Conclusions

6. Appendix
What did we learn from the model?

1. Shift in expected house appreciation key to boom-bust in p_H

2. This explanation is consistent with recent micro evidence

3. Endogenous relaxation of credit conditions from change in beliefs

4. Credit important for home-ownership, leverage, foreclosures, but not p_H

5. Δp_H transmits to ΔC through wealth effects

6. Principal reduction program would not have mitigated drop in C
Outline

1. Overview

2. Model

3. Questions
 Q1: What shock(s) drove the boom-bust in p_h?
 Q2: How does the fall in p_h transmit to C?
 Q3: Could a debt-forgiveness policy have cushioned the bust?

4. Further evidence

5. Conclusions

6. Appendix
Beliefs vs actual change in preferences

- Preference shock: similar rise in p_h, but C falls!
Change in home ownership by age

- It’s the young who go in/out of housing market

Kaplan, Moll and Violante (2017)
Shock to Interest Rate

House Price

ND Consumption

Kaplan, Moll and Violante (2017)
Consumption response by age during Bust

- Δc in the baseline - Δc in the Income-only counterfactual

Kaplan, Moll and Violante (2017)
Parameterization strategy

Parameter values disciplined by facts from household-level micro-data

- Distributional stats: mortgages, renters, and consumption

<table>
<thead>
<tr>
<th>Moment</th>
<th>Empirical value</th>
<th>Model Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction homeowners w/ mortgage</td>
<td>0.66</td>
<td>0.57</td>
</tr>
<tr>
<td>Aggr. mortgage debt / housing value</td>
<td>0.42</td>
<td>0.36</td>
</tr>
<tr>
<td>P10 LTV ratio for mortgagors</td>
<td>0.15</td>
<td>0.28</td>
</tr>
<tr>
<td>P90 LTV ratio for mortgagors</td>
<td>0.92</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>0.66</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>0.11</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>0.98</td>
</tr>
<tr>
<td>Avg.-size owned house / rented</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>Avg. earnings owners / renters</td>
<td>2.05</td>
<td>2.02</td>
</tr>
<tr>
<td>BPP consumption insurance coef</td>
<td>0.36</td>
<td>0.43</td>
</tr>
</tbody>
</table>
Solution and simulation

• Equilibrium computed with a version of Krusell-Smith (1998)
• Forecasting rule used by households in their problem:

\[\log p_h' = a_0(Z, Z') + a_1(Z, Z') \log p_h \]

• **Aggregate consistency**: in equilibrium, forecasting rule is also law of motion for prices
• Note: \(\rho \) computable from zero-profit condition, given \(p_h \) and \(\mathbb{E}[p_h'] \)
Simulation of boom-bust: realized path for shocks

1. **Productivity**: aggregate earnings data

2. **Credit conditions**: max LTV: 85% - 100%, HELOC limit: 20% - 30%, origination costs: 1% - 0

3. **Beliefs**: expected house price growth from Case-Shiller survey
Household problem: Renter

• A non-homeowner can stay a renter or become an owner:

\[V^n(b_j, z_j; \Omega) = \max \{ V^r(b_j, z_j; \Omega), V^o(b_j, z_j; \Omega) \}, \]

where \(\Omega \) denotes the vector of aggregate states \((\mathcal{Z}, \mu)\).

• Those who choose to rent solve:

\[
V^r(b_j, z_j; \Omega) = \max_{c_j, h_j, b_{j+1}} u_j(c_j, s_j) + \beta \mathbb{E}_{z_j, \Omega} [V^n(b_{j+1}, z_{j+1}; \Omega')] \\
\text{s.t.} \\
c_j + \rho(\Omega) h_j + q_b b_{j+1} \leq b_j + y_j - \mathcal{T}(y_j, 0) \\
b_{j+1} \geq 0 \\
s_j = h_j \in \tilde{\mathcal{H}} \\
z_{j+1} = \gamma(z_j) \quad \Omega' = \Gamma(\Omega)
\]
Household problem: Buyer

- Those who choose to buy and become owners solve:

\[
V^o(b_j, z_j; \Omega) = \max_{c_j, b_{j+1}, h_{j+1}, m_{j+1}} \ u_j(c_j, s_j) + \beta \mathbb{E}_{z_j, \Omega} [V^h(x_{j+1}, z_{j+1}; \Omega')] \\
\text{s.t.} \\
c_j + q_b b_{j+1} + p_h(\Omega) h_{j+1} + \kappa_m \leq b_j + y_j - T(y_j, 0) + q_m(x_{j+1}, z_j; \Omega) m_{j+1} \\
m_{j+1} \leq \lambda^m p_h(\Omega) h_{j+1} \\
b_{j+1} \geq 0 \\
h_{j+1} \in \mathcal{H}, \quad s_j = \omega h_{j+1} \\
z_{j+1} = \gamma(z_j), \quad \Omega' = \Gamma(\Omega) \\
\text{where } x_{j+1} := (b_{j+1}, h_{j+1}, m_{j+1})
\]
Household problem: Homeowner

\[V^h(x_j, z_j; \Omega) = \max \begin{cases}
\text{Pay:} & V^p(x_j, z_j; \Omega) \\
\text{Refinance:} & V^f(x_j, z_j; \Omega) \\
\text{Sell:} & V^n(\tilde{b}_j, z_j; \Omega) \\
\text{Default:} & V^d(b_j, z_j; \Omega) \end{cases} \]

where \(x_j := (b_j, h_j, m_j) \)

• Seller's liquid assets after transaction:

\[\tilde{b}_j = b_j - \kappa_h p_h(\Omega) h_j - (1 + r_m) m_j + (1 - \delta_h - \tau_h) p_h(\Omega) h_j \]
Household problem: Homeowner

- A household that makes its mortgage payment solves:

\[
V^p(x_j, z_j; \Omega) = \max_{c_j, b_{j+1}, \pi_m} u(c_j, s_j) + \beta \mathbb{E}_{z_j, \Omega} \left[V^h(x_{j+1}, z_{j+1}; \Omega') \right]
\]

\[
s.t.
\]
\[
c_j + q_b(b) b_{j+1} + (\delta_h + \tau_h) p_h(\Omega) h_j + \pi_m \leq b_j + y_j - T(y_j, m_j)
\]
\[
\pi_m \geq \pi_m^*
\]
\[
m_{j+1} = (1 + r_m) m_j - \pi_m
\]
\[
b_{j+1} \geq -\lambda^b p_h(\Omega) h_{j+1}
\]
\[
s_j = \omega h_j, \quad h_{j+1} = h_j
\]
\[
z_{j+1} = \gamma(z_j), \quad \Omega' = \Gamma(\Omega)
\]

where \(x_j := (b_j, h_j, m_j)\)

Note: Collateral effect for owners only through HELOCs
Household problem: Default

\[V^d(b_j, z_j; \Omega) = \max_{c_j, h_j, b_{j+1}} u(c_j, s_j) - \xi + \beta \mathbb{E}_{z_j, \Omega} [V^r(b_{j+1}, z_{j+1}; \Omega')] \]

s.t.
\[c_j + \rho(\Omega) h_j + q_b b_{j+1} \leq b_j + y_j - \mathcal{T}(y_j, 0) \]
\[b_{j+1} \geq 0 \]
\[s_j = h_j \]
\[z_{j+1} = \gamma(z_j), \quad \Omega' = \Gamma(\Omega) \]

- Disutility of default ξ
- Household must rent for a period
Mortgage pricing

- Zero-profit condition by type j, $\mathbf{x} = (b, h, m)$, z yields:

$$qm(x_{j+1}, z_{j+1}; \Omega) = \frac{1}{(1 + rm) m_{j+1}} \cdot \mathbb{E}_{z_j, \Omega} \left\{ [g^n_{j+1} + g^f_{j+1}] (1 + rm) m_{j+1}
ight.$$

$$+ g^d_{j+1} \min \left\{ (1 - \delta^d_h) \rho_h(\Omega') h_{j+1}, (1 + rm) m_{j+1} \right\}$$

$$+ [1 - g^n_{j+1} - g^f_{j+1} - g^d_{j+1}] \left[\pi m(x_{j+2}, z_{j+2}; \Omega') + qm(x_{j+2}, z_{j+2}; \Omega') m_{j+2} \right] \}$$

- g^n : sell
- g^f : refinance
- g^d : default
- $g^n = g^f = g^d = 0 \rightarrow$ make mortgage payment
Rental company

- Rental company owns housing units and rents them out to hh
- It can buy/sell units frictionlessly on the housing market

\[
J(\tilde{H}; \Omega) = \max_{\tilde{H}'} -\psi \tilde{H}' - p_h [\tilde{H}' - (1 - \delta_h - \tau_h)\tilde{H}] + \\
\rho \tilde{H}' + \left(\frac{1}{1 + r_b}\right) \mathbb{E}_\Omega [J(\tilde{H}'; \Omega')]
\]

- Optimization implies the equilibrium rental rate:

\[
\rho = p_h + \psi - \left(\frac{1 - \delta_h - \tau_h}{1 + r_b}\right) \mathbb{E}_\Omega [p_h(\Omega')]
\]