Discussion of “What We Can Learn from Contingent Claims Analysis”

John Heaton
University of Chicago and NBER

September 13, 2012
Basic Issues:

- Identifying important risks:
 - Bankruptcy
 - Tail risks
 - Systematic risks
 - Systemic risks

- Signals:
 - Firm level, industry level, macro level quantities
 - Security prices:
 - Equity
 - Bond prices
 - CDS
 - Option prices
 - ...

Market Prices

- Help to identify shocks
- Prices and contracts
 - Feedback loops from collateral restrictions, . . .
 - . . .
- Market prices and capital requirements
 - Impact on stability of markets
 - Impact on incentives
 - Variation in risk premia (risk-aversion) impacts required capital
- Useful prices may not be observable: e.g. corporate bonds
Contingent Claim Approach

Many “standard” securities have contingent claims imbedded in them:

- Equity: call option on the firm where the strike price is the promised payments to bond holders
- Government guarantees
- CDS
- . . .
Example: default probabilities

\[V_T = V_0 \exp\left\{ \left(\mu - \frac{\sigma^2}{2} \right) T + \sigma \sqrt{T} Z_T \right\} \]

Fig. 7. Distribution of the firm’s assets value at maturity of the debt obligation.
Default characteristics

- Obtain
 - Expected Default Frequency:
 \[p_T = \Pr [V_T < F| V_0] = N(-d_2) \]
 - Distance to Default (DD)
 \[d_2 = \frac{\ln \left(\frac{V_0}{F} \right) + \left(\mu - \sigma^2 / 2 \right) T}{\sigma \sqrt{T}} \]
Estimating Value and Volatility

- What are the unknowns?
 1. V_0: as book values of assets are unreliable;
 2. σ: the volatility of assets
 3. F: The default point.

- Example: $F = \text{Short Term Debt} + \frac{1}{2} \text{Long Term Debt}$

- The last two items are V_0 and σ.

- What can we observe about a firm?
 - The market value of equity;
 - The volatility of equity.
BSM Valuation:

- Equity is a call option on the firm:

\[E_0 = \text{Call}(V_0, K, T, r, \delta, \sigma) = N(d_1) V_0 - Ke^{-r(T-t)} N(d_2) \]

- From here, we can also compute the volatility of equity:

\[\sigma_E = N(d_1) \left(\frac{V_0}{E_0} \right) \sigma \]

- Therefore, we set

\[E_0 = \text{Market Value of Equity}; \quad \sigma_E = \text{Volatility of Equity} \]

- We solve two equations in the two unknown \(V_0 \) and \(\sigma \).
Using the Results

- Probability of default:
 - Depends of V_0, σ, F, μ
 - Risk-neutral valuation doesn’t identify μ
 - Risk-neutral probabilities versus risk-natural probabilities
 - Take a stand on μ.
 - Generic problem: going from risk-neutral to risk-natural probabilities
 - Use model and/or other information about underlying cash flows
Contingent Claims Approach

- Great to use information from other assets
- Information in covariance structure of returns, prices and cash flows
- Mixing information from all financial markets should prove useful
- Financial markets can provide important signals
- But assumptions/models are needed
- This research represents a very good attempt to use the wide variety of information available.