Policy versus Distribution

- High vs Low Quality actors
- Three districts: L, M, H
- M district Voter
 - Wants low taxes—prefer L
 - Wants share of pork —prefer H
Relation to Other Questions

- Seniority
 - Vote for senior guy – more pork

- Professionalization
 - Staff size
 - Wealth of Candidates

- Comparative Politics
 - Why US differs from UK?
Relation to Other Questions

- Seniority
 - Vote for senior guy – more pork
- Professionalization
 - Staff size
 - Wealth of Candidates
- Comparative Politics
 - Why US differs from UK?
 - apart from inability to speak English
 - and cold beer
 - obsession with guns
- Mechanism
 - How does economic skill enhance legislative ability
 - Over time variance? Committee assignment variance?
Mechanism = Proposal Power

- H crafts more bills
- But H needs supporters
- Simple legislative game
 1. A bill opportunity arises
 2. Random recognition
 3. Proposal in form \((x_1, x_2, x_3)\) (sum to 1)
 4. Majority vote
 5. If reject then with probability \(\delta\) chance to cram another bill in the slot.
 6. Random recognition and \((x_1, x_2, x_3)\)
 7. Majority vote—pork is \((0,0,0)\) if bill rejected

Recognition:
- Suppose 2H and L in legislature:
- \(r_H = \frac{\beta}{2\beta + 1}\) and \(r_L = \frac{1}{2\beta + 1}\)
At 6 (1,0,0) is proposed and passes.

Continuation value at 4)

For H: $V_H = \delta \frac{\beta}{2\beta+1}$

For L: $V_L = \delta \frac{1}{2\beta+1}$

At 3:

- If H proposes then $(1 - \delta \frac{1}{2\beta+1}, \delta \frac{1}{2\beta+1}, 0)$
- If L proposes then $(1 - \delta \frac{\beta}{2\beta+1}, \delta \frac{\beta}{2\beta+1}, 0)$

Expected value of each legislative slot is:

- for H: $\frac{\beta}{2\beta+1}(1 - \delta \frac{1}{2\beta+1})$
- for L: $\frac{1}{2\beta+1}(1 - \delta \frac{\beta}{2\beta+1}) + (1 - \frac{1}{2\beta+1})(\delta \frac{1}{2\beta+1})$

So $H \text{ pork} - L \text{ pork} = -\frac{(\beta-2\beta^2+2\beta\delta+1)}{(2\beta+1)^2}$
Backward Induction: H L L legislature

- At 6 (1,0,0) is proposed and passes.
- Continuation value at 4)
 - For H: $V_H = \delta \frac{\beta}{\beta+2}$
 - For L: $V_L = \delta \frac{1}{\beta+2}$
- At 3:
 - H proposes $(1 - \delta \frac{1}{\beta+2}, \delta \frac{1}{\beta+2}, 0)$
 - L proposes $(1 - \delta \frac{1}{\beta+2}, \delta \frac{1}{\beta+2}, 0)$
- Expected value of each legislative slot is:
 - for H: $\frac{\beta}{\beta+2} (1 - \delta \frac{1}{\beta+2})$
 - for L: $\frac{1}{2\beta+1} (1 - \delta \frac{1}{\beta+2}) + \frac{1}{2\beta+1} (\delta \frac{1}{\beta+2}) + \frac{\beta}{2\beta+1} \frac{1}{2} (\delta \frac{1}{\beta+2})$
- H pork - L pork = $-\frac{(4\beta - 8\beta^2 - 4\beta^3 + 4\beta\delta + 5\beta^2\delta + 8)}{2(\beta+2)^2(2\beta+1)}$
When does H get more Pork?
How Much More Pork?

$\delta = 1/2$
Conclusions

- Relation to Other Questions
 - Seniority
 - Professionalization

- Comparative Politics

- Where does superiority come from?
 - Proposal power?
 - Legislature need to support bills
 - Market for supports