Generalized Compensation Principle

Aleh Tsyvinski1 Nicolas Werquin2

1Yale University
2Toulouse School of Economics

Becker Friedman Institute, May 2018
Introduction

• An economic disruption typically creates winners and losers
 • e.g., technological change, immigration inflow, trade liberalization
 • more generally, any shock that affects the wage distribution

• Welfare compensation problem:
 • can we design a reform of the tax-and-transfer system . . .
 • that offsets these losses by redistributing the gains of the winners . . .
 • and if so, is it budget-feasible?

• Traditional PF [Kaldor 1939, Hicks 1939/40]: compensating variation
 • amount that agent i is willing to pay to be as well off as before the shocks
 • simple implementation if lump-sum taxes are available policy instruments
Introduction

• **First limitation** of the Kaldor-Hicks criterion:

 • in practice, tax instruments are distortionary [Mirrlees 1971]

 • asymmetric information: only an income tax is available

• **Second limitation**: for many disruptions we need general equilibrium

 • e.g., consider an immigration inflow: no welfare impact in PE

 • in GE, a higher supply of labor affects the wage distribution through:

 (i) decreasing marginal product, (ii) skill complementarities in production

• **Combining distortionary taxes and GE makes the compensation difficult**

 • lowering taxes raises labor supply – just like an immigration inflow . . .

 • this generates further welfare gains and losses that need to be themselves compensated using the tax code \(\Rightarrow\) complex fixed point problem
Introduction

• **Goal:** design tax reform to bring each agent’s utility back to initial level
 • consider (marginal) disruption of wage distribution in arbitrary direction
 • **main result:** compensating tax reform and fiscal surplus in closed-form
 • **application:** compensating the impact of automation (robots) in the US

• **First step:** partial equilibrium environment with distortionary taxes
 • **key:** to a first order, indirect utility moves one-for-one with total tax bill
 • because envelope theorem \(\rightarrow \) marginal tax rate does not affect welfare
 • adjust average tax rate to cancel out the exogenous wage disruption

• **GE:** simultaneously solve for average and marginal tax rates (IDE)
 • **key:** marginal tax rate directly affects welfare, even conditional on ATR
 • because changes in labor supply (MTR) impact wages, and hence utility
 • progressive reform at rate \(= \) ratio of labor demand vs. supply elasticities
Outline

1. The Welfare Compensation Problem

2. Design of the Compensating Tax Reform

3. Application: Compensating the Impact of Robots
Initial equilibrium

- **Individuals** $i \in [0, 1]$: wage w_i, labor supply l_i, income tax $T(w_i l_i)$

 welfare: $U_i = \max_{l_i > 0} u_i (w_i l_i - T(w_i l_i), l_i)$

- **Endogenous labor supply**: first-order condition [FOC]

 labor supply: l_i satisfies $-\frac{u'_{i,l} (c_i, l_i)}{u'_{i,c} (c_i, l_i)} = [1 - T'(w_i l_i)] w_i$

- **Endogenous wage**: marginal product of aggregate labor input [MPL]

 wage: $w_i = \mathcal{F}'_i (\{L_j\}_{j \in [0,1]})$

- **Government** tax revenue R given the tax schedule T

- **in the paper**: endogenous participation decisions, capital ownership
Wage disruptions and tax reforms

• Arbitrary disruption \(\hat{w}^E = \{\hat{w}_i\}_{i \in [0,1]} \) of the wage distribution \(w \)

 • e.g., due to exogenous change \(\hat{F} \) in the production function (tech change)

 • before agent \(i \) adjusts behavior \(\leadsto \) perturbed wage is \(w_i (1 + \mu \hat{w}_i) \)

 • government implements tax reform \(\hat{T} \leadsto \) perturbed tax schedule \(T + \mu \hat{T} \)

• New equil. \((\{w_i(1 + \mu \hat{w}_i^E + \mu \hat{w}_i)\}, \{l_i(1 + \mu \hat{l}_i)\}, \{U_i + \mu \hat{U}_i\}, T + \mu \hat{T}) \)

 • individuals adjust labor supply, which further impacts their wage, etc

 • \(\{\hat{w}_i\}_{i \in [0,1]} \): total endogenous (percentage) changes in wages

• Welfare compensation problem: find \(\hat{T} \) s.t. \(\hat{U}_i = 0 \ \forall i \) in new equil.

 • focus on marginal disruptions in the direction \(\hat{w}^E \): size \(\mu \to 0 \)

 • once we solve for \(\hat{T} \), deriving the fiscal surplus \(\hat{R} \) is straightforward
Outline

1. The Welfare Compensation Problem
2. Design of the Compensating Tax Reform
3. Application: Compensating the Impact of Robots
Welfare compensation in PE

- **Partial equilibrium** (exogenous wages): \(\mathcal{F}(\{L_i\}_{i \in [0,1]}) = \int_0^1 \theta_i L_i di \)
 - exogenous disruption \(\hat{w}^E \) induces no further adjustment: \(\hat{w}_i = 0 \forall i \)

- **Marginal wage disruption:** linearize the condition \(\hat{U}_i = 0 \) as \(\mu \to 0 \)

\[
0 = [(1 - T'(w_il_i)) w_il_i] \hat{w}_i^E - \hat{T}(w_il_i)
\]

- in PE, the change in the indirect utility \(\hat{U}_i \) of agent \(i \) is due to:
 1. exogenous wage change \(\hat{w}_i^E \) weighted by the retention rate \(1 - T'(w_il_i) \)
 2. absolute tax change \(\hat{T}(w_il_i) \), which makes him poorer iff it is positive

- **Envelope thm:** in PE, the marginal tax rate change \(\hat{T}'(w_il_i) \) does not matter for welfare, conditional on the average tax rate change \(\hat{T}(w_il_i) \)
 - immediately get compensating tax reform \(\hat{T} \) following any disruption \(\hat{w}^E \)
Elasticities

• **Conclusion:** compensating tax reform with distortionary taxes in PE

 • adjust average tax rate by the net income gain or loss due to disruption

 \[
 \frac{\hat{T}(y_i)}{y_i} = (1 - T'(y_i)) \hat{w}_i^E
 \]

• **GE:** tax formulas in terms of standard (observable) elasticities

 • labor supply elasticities of \(l_i \) wrt retention rate, wage: \(\varepsilon_{i,S,r} \), \(\varepsilon_{i,S,w} \) [Hicks]

 • labor supply elasticity of \(l_i \) wrt non-labor income: \(\varepsilon_{i,S,n} \) [income effect]

 • cross-wage elasticity of \(w_j \) wrt \(L_i \): \(\gamma_{ji} \) [skill complementarities in prod.]
 \(\gamma_{ji} \) discontinuous at \(j \approx i \)

 • own-wage elasticity of \(w_i \) wrt \(L_i \): \(\frac{1}{\varepsilon_{i,D}} \) [decreasing mg product of labor]
 inverse elasticity of labor demand
Welfare compensation problem in GE

- **GE**: Linearizing the zero compensating variation condition \(\hat{U}_i = 0 \)

\[
0 = [(1 - T'(w_il_i)) l_i] (\hat{w}_i^E + \hat{w}_i) - \hat{T}(w_il_i)
\]

- **MPL**: endogenous wage adjustment

\[
\hat{w}_i = -\frac{1}{\varepsilon_i} \hat{l}_i + \int_0^1 \gamma_{ij} \hat{l}_j dj
\]

- **FOC**: total labor supply adjustment

\[
\hat{l}_i = \hat{l}_{pe} + \varepsilon_{i,w}^S \int_0^1 \Gamma_{ij} \hat{l}_{pe} dj
\]

elasticity \(\Gamma_{ij} \) accounts for infinite series of cross-wage effects [Sachs Tsyvinski Werquin 17]

- where PE incidence:

\[
\hat{l}_{pe} = \varepsilon_{i,w}^S \hat{w}_i^E - \varepsilon_{i,r}^S \frac{T'(y_i)}{1-T'(y_i)} + \varepsilon_{i,n}^S \frac{\hat{T}(y_i)}{(1-T'(y_i))y_i}
\]

- **Key**: In GE, changes in labor supply, and hence in MTR, have 1st-order welfare effects despite the envelope theorem because they impact wages

- higher marginal tax rate raises utility: hours ↓ & wage ↑ [cf. Stiglitz 82]
Welfare compensation in GE: Solution

- Compensating reform \hat{T} solution to functional (integro-differential) eqn
 - **main result:** solve for reform \hat{T} (and fiscal surplus) in closed-form
 - same formula with endogenous participation decisions and capital

- **Proposition:** The compensating tax reform is given in closed-form by

$$
\frac{\hat{T}(y_i)}{y_i} = (1 - T'(y_i)) \left[\int_1^1 \mathcal{E}_{ij} \hat{\Omega}_j^E \, dj + \Lambda_i \right]
$$

where: $\hat{\Omega}_j^E$ is the modified wage disruption variable
 accounts for incidence of the initial shock \hat{w}_i^E (labor demand spillovers in closed-form)

where: \mathcal{E}_{ij} is the progressivity variable
 implies a progressive compensating reform. CES-CRP: $\mathcal{E}_{ij} \propto y_i^{\varepsilon D / \varepsilon S, r - p}$

where: Λ_i is the compensation-of-compensation variable
 series $\Lambda_i = \sum_n \Lambda_i^{(n)}$ of compensations. Λ constant with CES (uniform shift in tax rates)
Progressivity of the compensating tax reform

- \mathcal{E}_{ij}: assume decreasing MPL, infinite substitutability between skills

- in PE, the compensating tax reform is $\frac{\hat{T}(y_i)}{y_i} = (1 - T'(y_i)) \hat{w}_i^E$

- in GE, ATR must compensate both the wage disruption and the welfare effects generated endogenously by the marginal tax rate changes

$$\frac{\hat{T}(y_i)}{y_i} = (1 - T'(y_i)) \hat{\Omega}_i^E + \left[1 - p + (\varepsilon^D/\varepsilon^{S,r})\right]^{-1} \hat{T}'(y_i)$$

- suppose agents $i < i^*$ are undisrupted \Rightarrow progressive tax reform, because in GE, an average tax hike must be compensated by a marginal tax hike

- Consequence [ODE]: ATR evolve below y_{i^*} at constant rate $\frac{\varepsilon^D}{\varepsilon^{S,r}} - p > 0$

$$\frac{\hat{T}(y_i)}{y_i} \propto y_i^{\varepsilon^D/\varepsilon^{S,r}-p} I\{y_i \leq y_{i^*}\}$$

- rate of progressivity: labor demand elasticity \div labor supply elasticity

- key: this ratio determines how much \uparrow mg tax rate \uparrow wage / utility
Graphical representation

- **Calibration**: constant elasticities $(\varepsilon, \sigma, p) = (0.33, 0.6, 0.156)$
 compensation of a 100 gross income loss at $y_i^* = \$20K, \$60K$
Outline

1. The Welfare Compensation Problem

2. Design of the Compensating Tax Reform

3. Application: Compensating the Impact of Robots

- Quantitative application based on Acemoglu and Restrepo (2017)

1990-2007: one additional robot per 1000 workers

![Graph showing wage disruption and income changes](image-url)
Compensation in GE

- **Compensating tax changes:** -113 at 10th centile (112\% income loss), $+260$ at 90th percentile (124\% income gain) \leadsto fiscal surplus 16

![General-equilibrium compensation (U.S.)](image1)

![Compensation (U.S.): Average tax rates](image2)
Conclusion

• **Classic PF question:** economic shock generally creates winners and losers
 Kaldor 39, Hicks 39/40, Kaplow 04/12, Hendren 14
 - design a compensating tax reform and evaluate its fiscal surplus
 - closed-form tax reform in general equilibrium with only distortionary taxes
 - more generally: compensate so that welfare of agent i changes by $h_i \in \mathbb{R}$

• **Applications:** automation, job polarization, immigration, intl trade
 Acemoglu Restrepo 17, Goos et al 14, Dustmann Frattini Preston 13, Antras Gortari Itshkoki 17
 - need GE framework: relative wages determined by relative supply of skills

• **Advantages of compensation principle over optimal taxation**
 Stiglitz 82, Rothschild Scheuer 13/16, Ales Kurnaz Sleet 15, Sachs Tsyvinski Werquin 16
 - policy-relevance: work with actual tax system and observable variables
 - tractability (closed form) in much more general environments
 - no need to choose a particular social welfare function