Some simple Bitcoin Economics

Linda Schilling1 and Harald Uhlig2

1École Polytechnique - CREST
Department of Economics
lin.schilling@gmail.com

2University of Chicago
Department of Economics
huhlig@uchicago.edu

June 2018
Outline

1. Introduction.
2. The Model
3. Analysis
4. Bitcoins and Monetary Policy
5. Examples
6. Conclusions
Introduction.

Questions

- Bitcoin, cybercurrencies: increasingly hard to ignore.
- Increasing number of cybercurrencies. Regulatory concerns.
- Blockchain technology. (Not a topic today)
- Imagine a world, where Bitcoin (or cybercurrencies) are important.
- Key questions:
 - How do Bitcoin prices evolve?
 - What are the consequences for monetary policy?
Bitcoin Price, 2011-09-13 to 2018-02-07

Data: quandl.com
Bitcoin Price, 2017-01-01 to 2018-02-07

Data: quandl.com
This paper

Approach: a simple model, with money as a medium of exchange.

- A novel, yet simple endowment economy: two types of agents keep trading.
- Two types of money: Bitcoins and Dollars.
- A central bank keeps real value of Dollars constant...
- ... while Bitcoin production is private and decentralized.

Results:

- “Fundamental condition”: a version of Kareken-Wallace (1981)
- “Speculative condition”.
- Under some conditions: no speculation.
- Under some conditions: Bitcoin price converges.
- Implications for monetary policy: two scenarios.
- Construction of equilibria.
Literature

Bitcoin Pricing
- Athey et al
- Garratt and Wallace (2017)
- Huberman, Leshno, Moallemi (2017)

Currency Competition
- Kareken and Wallace (1981)

(Monetary) Theory
- Bewley (1977)
- Townsend (1980)
- Kyotaki and Wright (1989)
- Lagos and Wright (2005)
Outline

1. Introduction.
2. The Model
3. Analysis
4. Bitcoins and Monetary Policy
5. Examples
6. Conclusions
The model

- $t = 0, 1, 2, \ldots \text{ Randomness: } \theta_t$, at beg. of per.. History: θ^t.
- Two types of money: Bitcoins B_t and Dollars D_t (aggregates).
- Assume: Central Bank keeps Dollar price constant, $P_t \equiv 1$.
- Goods (= Dollar) price of Bitcoins: $Q_t = Q(\theta_t)$.
- Two types of infinitely lived agents: green and red.
- Green agent j in even periods t:
 - receives lump sum Dollar transfer (“tax”, if < 0) from Central Bank.
 - purchases goods from red agents, with Bitcoins or Dollars.
 - enjoys consumption $c_{t,j}$, utility $\beta^t u(c_{t,j})$.
- Green agents in odd periods t:
 - mines new Bitcoins $A_{t,j} = f(e_{t,j}; B_t)$ at effort $e_{t,j} \geq 0$, disutil. $-\beta^t e_{t,j}$.
 - receives goods endowment $y_{t,j}$. Not storable.
 - can sell goods to red agents, against Bitcoins or Dollars.
- Red agents: flip even and odd periods.
- Assume: whoever consumes first has all the money.
Timeline

The Model

Schilling-Uhlig

Some simple Bitcoin Economics

June 2018
Some simple Bitcoin Economics

June 2018
Timeline

CB

MINING

MINING

MINING

MINING

CB

Some simple Bitcoin Economics

June 2018
Optimization problem of green agents: (drop “\(j\")

Maximize \[U = E \left[\sum_{t=0}^{\infty} \beta^t (\xi_{t,g} u(c_t) - e_t) \right] \]

where \(\xi_{t,g} = 1\) in even periods, \(\xi_{t,g} = 0\) in odd periods, s.t.

in even periods \(t\):
- \(0 \leq b_t \leq Q_t B_{t,g}\) \hspace{1cm} (1)
- \(0 \leq P_t d_t \leq D_{t,g}\) \hspace{1cm} (2)
- \(0 \leq c_t = b_t + d_t\) \hspace{1cm} (3)
- \(0 \leq B_{t+1,g} = B_{t,g} - b_t/Q_t\) \hspace{1cm} (4)
- \(0 \leq D_{t+1,g} = D_{t,g} - P_t d_t\) \hspace{1cm} (5)

in odd periods \(t\):
- \(A_t = f(e_t; B_t)\), with \(e_t \geq 0\) \hspace{1cm} (6)
- \(y_t = x_t + z_t\), with \(x_t \geq 0\), \(z_t \geq 0\) \hspace{1cm} (7)
- \(0 \leq B_{t+1,g} = A_t + B_{t,g} + x_t/Q_t\) \hspace{1cm} (8)
- \(0 \leq D_{t+1,g} = D_{t,g} + P_t z_t + \tau_{t+1}\) \hspace{1cm} (9)
Monetary Policy and Market clearing

- The **Central Bank** achieves \(P_t \equiv 1 \), per suitable transfers \(\tau_t \).
- Markets clear:

 - Bitcoin market: \(B_t = B_{t,r} + B_{t,g} \) \hspace{1cm} (10)
 - Dollar market: \(D_t = D_{t,r} + D_{t,g} \) \hspace{1cm} (11)
 - Bitcoin denom. cons. market: \(b_t = x_t \) \hspace{1cm} (12)
 - Dollar denom. cons. market: \(d_t = z_t \) \hspace{1cm} (13)
Equilibrium

An equilibrium is a stochastic sequence

\((A_t, [B_t, B_{t,g}, B_{t,r}], [D_t, D_{t,g}, D_{t,r}], \tau_t, (P_t, z_t, d_t), (Q_t, x_t, b_t), e_t)_{t \geq 0}\)

- Given prices, choices maximize utility for green and red agents.
- Budget constraints
 - \(0 \leq b_{t,j} \leq B_{t,j}Q_t\)
 - \(0 \leq P_t d_{t,j} \leq D_{t,j}\)
- Evolution money stock
 - \(B_{t+1,j} = B_{t,j} - b_{t,j}/Q_t \geq 0\)
 - \(D_{t+1,j} = D_{t,j} - P_t d_{t,j} \geq 0\)
 - \(B_{t+1,j} = B_{t,j} + x_{t,j}/Q_t + A_{t,j}(e_{t,j})\)
 - \(B_{t+1,j} = B_{t,j} + x_{t,j}/Q_t + A_{t,j}(e_{t,j})\)
- Markets clear (for goods, Bitcoin, Dollars):
 - \(y_t = \int_0^2 c_{t,j} \, dj\)
 - \(\int_0^2 z_{t,j} \, dj = \int_0^2 d_{t,j} \, dj\)
 - \(\int_0^2 x_{t,j} \, dj = \int_0^2 b_{t,j} \, dj\)
 - \(D_t = D_{t,g} + D_{t,r}\)
 - \(B_t = B_{t,g} + B_{t,r}\)
- Dollar monetary policy: \(P_t = 1\)
Outline

1. Introduction.
2. The Model
3. Analysis
4. Bitcoins and Monetary Policy
5. Examples
6. Conclusions
Consolidate:

\[
\begin{align*}
B_{t+1} &= B_t + f(e_t; B_t) \\
D_t &= D_{t-1} + \tau_t \\
c_t &= y_t
\end{align*}
\]
Avoid speculation with Dollars

Assumption A.

Assume throughout: for all t,

$$u'(y_t) - \beta^2 \mathbb{E}_t[u'(y_{t+2})] > 0$$

(14)

Proposition

(All Dollars are spent:) Agents will always spend all Dollars. Thus, $D_t = D_{t,g}$ and $D_{t,r} = 0$ in even periods and $D_t = D_{t,r}$ and $D_{t,g} = 0$ in odd periods.

This is a consequence of assumption 14 and $P_t \equiv 1$.

Proposition

(Dollar Injections:) In equilibrium,

$$D_t = z_t \text{ and } \tau_t = z_t - z_{t-1}$$
Bitcoin Production

Proposition

(Bitcoin Production Condition:) Suppose that Dollar sales are nonzero, \(z_t > 0 \) in period \(t \). Then

\[
1 \geq \beta E_t \left[u'(c_{t+1}) \frac{\partial f(e_t; B_t)}{\partial e_t} Q_{t+1} \right]
\]

(15)

This inequality is an equality, if there is positive production \(A_t > 0 \) of Bitcoins and associated positive effort \(e_t > 0 \) at time \(t \) as well as positive spending of Bitcoins \(b_{t+1} > 0 \) in \(t + 1 \).
The Fundamental Condition

The following is a version of Kareken-Wallace (1981).

Proposition

(Fundamental Condition:)

Suppose that sales happen both in the Bitcoin-denom. cons. market as well as the Dollar-denom. cons. market at time t as well as at time $t + 1$, i.e. suppose that $x_t > 0$, $z_t > 0$, $x_{t+1} > 0$ and $z_{t+1} > 0$. Then

$$E_t [u'(c_{t+1})] = E_t [u'(c_{t+1}) \frac{Q_{t+1}}{Q_t}]$$ \hspace{1cm} (16)

In particular, if consumption and production is constant at $t + 1$, $c_{t+1} = y_{t+1} \equiv \bar{y}$, then

$$Q_t = E_t [Q_{t+1}]$$ \hspace{1cm} (17)

i.e., the price of a Bitcoin in Dollar is a martingale.
The Speculative Condition

Proposition

(Speculative Condition:)
Suppose that $B_t > 0$, $Q_t > 0$, $z_t > 0$ and that $b_t < Q_t B_t$. Then,

$$u'(c_t) \leq \beta^2 \mathbb{E}_t \left[u'(c_{t+2}) \frac{Q_{t+2}}{Q_t} \right]$$

(18)

where this equation furthermore holds with equality, if $x_t > 0$ and $x_{t+2} > 0$.
Seller Participation Condition

Proposition

(Seller Participation Condition:)

Suppose that $B_t > 0$, $Q_t > 0$, $z_t > 0$. Then

$$
\mathbb{E}_t \left[u'(c_{t+1}) \right] \geq \mathbb{E}_t \left[u'(c_{t+1}) \frac{Q_{t+1}}{Q_t} \right]
$$

(19)
The Sharpened No-Speculation Assumption

Assumption A.

For all t,

$$u'(y_t) - \beta \mathbb{E}_t[u'(y_{t+1})] > 0$$

(20)

This is a slightly sharper version of assumption 1, which only required

$$u'(y_t) - \beta^2 \mathbb{E}_t[u'(y_{t+2})] > 0$$
The No-Bitcoin-Speculation Theorem

Theorem

(No-Bitcoin-Speculation Theorem.) Suppose that $B_t > 0$ and $Q_t > 0$ for all t. Impose assumption 2. Then in every period, all Bitcoins are spent.

Proof.

\[
\beta^2 E_t[u'(c_{t+2})Q_{t+2}] = \beta^2 E_t[E_{t+1}[u'(c_{t+2})Q_{t+2}]] \\
\leq \beta^2 E_t[E_{t+1}[u'(c_{t+2})] \cdot Q_{t+1}] \\
< \beta E_t[u'(c_{t+1})Q_{t+1}] \\
\leq \beta E_t[u'(c_{t+1})]Q_t \\
< u'(c_t)Q_t
\]

(law of iter. expect.)

(equ. (19) at $t + 1$)

(ass. 2 at $t + 1$)

(equ. (19) at t)

(ass. 2 at t)

Thus, the specul. cond. (18) cannot hold in t. Hence $b_t = Q_tB_t$. □
A (very high) bound for Bitcoin Prices

Corollary

(Bitcoin price bound) Suppose that $B_t > 0$ and $Q_t > 0$ for all t. The Bitcoin price is bounded by

$$0 \leq Q_t \leq \bar{Q}$$

where

$$\bar{Q} = \frac{\bar{y}}{B_0}$$

(21)
Bitcoin Correlation-Pricing

Rewrite (16) as

$$Q_t = \frac{\text{cov}_t(u'(c_{t+1}), Q_{t+1})}{\mathbb{E}_t[u'(c_{t+1})]} + \mathbb{E}_t[Q_{t+1}]$$ \hspace{1cm} (22)$$

Corollary

(Bitcoin Correlation Pricing Formula:)

Suppose that $B_t > 0$ and $Q_t > 0$ for all t. Impose assumption 2. In equilibrium,

$$Q_t = \kappa_t \cdot \text{corr}_t(u'(c_{t+1}), Q_{t+1}) + \mathbb{E}_t[Q_{t+1}]$$ \hspace{1cm} (23)$$

where

$$\kappa_t = \frac{\sigma_{u'(c)|t} \sigma_{Q_{t+1}|t}}{\mathbb{E}_t[u'(c_{t+1})]} > 0$$ \hspace{1cm} (24)$$

where $\sigma_{u'(c)|t}$ is the standard deviation of marginal utility of consumption, conditional on date-t information, etc..
Martingale Properties

Corollary

(Martingale Properties of Equilibrium Bitcoin Prices:) Suppose $B_t > 0$ and $Q_t > 0$ for all t. Impose ass. 2. If and only if for all t, marg. util. of cons. and Bitcoin price are positively correlated at $t + 1$, given t info, the Bitcoin price is a supermartingale and strictly falls in expectation,

$$Q_t > \mathbb{E}_t[Q_{t+1}]$$

(25)

If and only if marginal utility and the Bitcoin price are always neg. corr.,

$$Q_t < \mathbb{E}_t[Q_{t+1}]$$

(26)

If and only if marginal utility and the Bitcoin price are always uncorr., the Bitcoin price is a martingale,

$$Q_t = \mathbb{E}_t[Q_{t+1}]$$

(27)
Bitcoin Price Convergence

Theorem

(Bitcoin Price Convergence Theorem.) Suppose that $B_t > 0$ and $Q_t > 0$ for all t. Impose assumption 2. For all t and conditional on information at date t, suppose that marginal utility $u'(c_{t+1})$ and the Bitcoin price Q_{t+1} are either always nonnegatively correlated or always non-positively correlated. Then the Bitcoin price Q_t converges almost surely pointwise as well as in L^1 norm to a (random) limit Q_∞,

$$Q_t \to Q_\infty \ a.s. \quad \text{and} \quad E[|Q_t - Q_\infty|] \to 0$$

(28)

Proof.

Q_t or $-Q_t$ is a bounded supermartingale. Apply Doob's martingale convergence theorem.
Outline

1. Introduction
2. The Model
3. Analysis
4. Bitcoins and Monetary Policy
5. Examples
6. Conclusions
Scenario 1 - Conventional approach

Assume that Bitcoin prices move independently of central bank policies. Impose assumption 2. Then

Proposition

(Conventional Monetary Policy:)

The equilibrium Dollar quantity is given as

\[D_t = y_t - Q_t B_t \] \hspace{1cm} (29)

The central bank’s transfers are

\[\tau_t = y_t - Q_t B_t - z_{t-1} \] \hspace{1cm} (30)
Scenarios 1 - Conventional approach

Proposition

(Dollar Stock Evolution:)
Tomorrow’s expected Dollar quantity equals today’s Dollar quantity corrected for deviation from expected production, purchasing power of newly produced Bitcoin and correlation

\[\mathbb{E}_t[D_{t+1}] = D_t - (y_t - \mathbb{E}_t[y_{t+1}]) - A_t Q_t + \kappa_t B_{t+1} \cdot \text{corr}_t(u'(c_{t+1}), Q_{t+1}) \]

Likewise, the central bank’s expected transfers satisfy

\[\mathbb{E}_t[\tau_{t+1}] = - (y_t - \mathbb{E}_t[y_{t+1}]) - A_t Q_t + \kappa_t B_{t+1} \cdot \text{corr}_t(u'(c_{t+1}), Q_{t+1}) \]

If the Bitcoin price is a martingale, then

\[\mathbb{E}_t[D_{t+1}] = D_t - (y_t - \mathbb{E}_t[y_{t+1}]) - A_t Q_t \]
\[\mathbb{E}_t[\tau_{t+1}] = - (y_t - \mathbb{E}_t[y_{t+1}]) - A_t Q_t \]
Scenario 2 - Unconventional approach

- Unconventional view, but compatible with equilibrium: the Central Bank can maintain the price level $P_t \equiv 1$ independently of the transfers she sets.
- Further, assume that she sets transfers independently of production.
- Note that

\[
Q_t = \frac{y_t - D_t}{B_t}
\]

(31)

- Intuitively, the causality is in reverse compared to scenario 1: now central bank policy drives Bitcoin prices.
- However, the process for the Dollar stock cannot be arbitrary.
 - To see this, suppose that $y_t \equiv \bar{y}$ is constant. We already know that Q_t must then be a martingale. Suppose B_t is constant as well. Equation (31) now implies that D_t must be a martingale too.
Scenario 2 - Unconventional approach

Proposition

(Submartingale Implication:)

If the Dollar quantity is set independently of production, the Bitcoin price process is a submartingale, $\mathbb{E}_t[Q_{t+1}] \geq Q_t$.
Scenario 2 - Unconventional approach

Suppose that production y_t is iid. Let F denote the distribution of y_t, $y_t \sim F$. The distribution G_t of the Bitcoin price is then given by

$$G_t(s) = \mathbb{P}(Q_t \leq s) = F(B_t s + D_t).$$

Proposition

(Bitcoin Price Distribution:)

In “scenario 2”, if Bitcoin quantity or Dollar quantity is higher, high Bitcoin price realizations are less likely in the sense of first order stochastic dominance.
Scenario 2 - Unconventional approach

Compare two economies with \(y_t \sim F_1 \) vs \(y_t \sim F_2 \), iid.

Definition
- Economy 2 is **more productive** than economy 1, if \(F_2 \) first order stochastically dominates \(F_1 \).
- Economy 2 has **more predictable production** than economy 1, if \(F_2 \) second order stochastically dominates \(F_1 \).

Proposition
(Bitcoins and Productivity)
Assume “scenario 2”. In more productive economies or economies with higher predictability of production, the Bitcoin price is higher in expectation.
Outline

1 Introduction.

2 The Model

3 Analysis

4 Bitcoins and Monetary Policy

5 Examples

6 Conclusions
Constructing an equilibrium: an example.

- Suppose $\theta_t \in \{L, H\}$, each with probability $1/2$.
- Let m_t be iid, $m_t = m(\theta_t)$, with $m(L) \leq m(H)$ and $\mathbb{E}[m_t] = (m_L + m_H)/2 = 1$. Pick $0 < \beta < 1$ such that $m(L) > \beta$.
- At date t and for $\epsilon(\theta^t) = \epsilon_t(\theta_t)$, consider two cases
 - **Case A:** $\epsilon_t(H) = 2^{-t}$, $\epsilon_t(L) = -2^{-t}$
 - **Case B:** $\epsilon_t(H) = -2^{-t}$, $\epsilon_t(L) = 2^{-t}$.
- Pick $Q_0 > \xi + (m(H) - m(L))/2$. Set

 $$Q_{t+1} = Q_t + \epsilon_{t+1} - \frac{\text{cov}_t(m_{t+1}, \epsilon_{t+1})}{E_t[m_{t+1}]}$$

- Fix some strictly concave $u(\cdot)$. Let $y_t = (u')^{-1}(m_t)$.
- Start with some initial B_0. With B_t and Q_t, equation (15) delivers new Bitcoin mining A_t and thus B_{t+1}.
- The No-Bitcoin-Speculation Theorem now implies the purchases $x_t = b_t = Q_t/B_t$ and $z_t = d_t = y_t - b_t$.
- Be careful with B_0, so that $b_t \leq y_t$ for all t. Or: fix “ex post”.

Schilling-Uhlig

Some simple Bitcoin Economics

June 2018 38/43
Super-, sub-, non-martingale examples

Consider three constructions,

Always A: Always impose case A, i.e. $\epsilon_t(H) = 2^{-t}$, $\epsilon_t(L) = -2^{-t}$. “Always A” results in supermartingale $Q_t > E_t[Q_{t+1}]$.

Always B: Always impose case B, i.e. $\epsilon_t(H) = -2^{-t}$, $\epsilon_t(L) = 2^{-t}$. “Always B” results in submartingale $Q_t < E_t[Q_{t+1}]$.

Alternate:
- In even periods, impose case A, i.e. $\epsilon_t(H) = 2^{-t}$, $\epsilon_t(L) = -2^{-t}$.
- In odd periods, impose case B, i.e. $\epsilon_t(H) = -2^{-t}$, $\epsilon_t(L) = 2^{-t}$.

This results in a price process that is neither a supermartingale nor a submartingale, but which one still can show to converge almost surely and in L_1 norm.
Bitcoin Price, 2017-01-01 to 2018-02-07

Data: quandl.com
“Bubble and bust” examples

- \(\theta_t \in \{L, H\} \), but now \(\mathbb{P}(\theta_t = L) = p < 0.5 \).
- Suppose that \(m(L) = m(H) = 1 \).
- Pick some \(Q > 0 \) as well as some \(Q^* > Q \).
- Pick some \(Q_0 \in [Q, Q^*] \). If \(Q_t < Q^* \), let

\[
Q_{t+1} = \begin{cases}
\frac{Q_t - pQ}{1-p} & \text{if } \theta_t = H \\
\frac{Q}{Q^*} & \text{if } \theta_t = L
\end{cases}
\]

If \(Q_t \geq Q^* \), let \(Q_{t+1} = Q_t \).
- Therefore \(Q_t \) will be a martingale and satisfies (22).
- If \(Q_0 \) is sufficiently far above \(\bar{Q} \) and if \(p \) is reasonably small, then typical sample paths will feature a reasonably quickly rising Bitcoin price \(Q_t \), which crashes eventually to \(Q \) and stays there, unless it reaches the upper bound \(Q^* \) first.
Outline

1. Introduction.
2. The Model
3. Analysis
4. Bitcoins and Monetary Policy
5. Examples
6. Conclusions
Recap and Conclusions.

Approach: a simple model, with money as a medium of exchange.

- A novel, yet simple endowment economy: two types of agents keep trading.
- Two types of money: Bitcoins and Dollars.
- A central bank keeps real value of Dollars constant...
- ... while Bitcoin production is private and decentralized.

Results:

- “Fundamental condition”: a version of Kareken-Wallace (1981)
- “Speculative condition”.
- Under some conditions: no speculation.
- Under some conditions: Bitcoin price converges.
- Implications for monetary policy: two scenarios.
- Construction of equilibria.