Banks’ Risk Exposures

Juliane Begenau Monika Piazzesi Martin Schneider
Stanford Stanford & NBER Stanford & NBER

Cambridge Oct 11, 2013
Modern Bank Balance Sheet, JP Morgan Chase 2011

Total assets/liabilities: $2.3 Trillion

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash</td>
<td>Equity</td>
</tr>
<tr>
<td>Securities</td>
<td>Deposits</td>
</tr>
<tr>
<td>Loans</td>
<td>Other borrowed money</td>
</tr>
<tr>
<td>Fed funds + Repos</td>
<td>Fed funds + Repos</td>
</tr>
<tr>
<td>Trading assets</td>
<td>Trading liabilities</td>
</tr>
<tr>
<td>Other assets</td>
<td>Other liabilities</td>
</tr>
</tbody>
</table>

6%	8%
16%	50%
31%	15%
17%	10%
20%	6%
10%	11%

Derivatives: $60 Trillion Notionals of Swaps
Portfolio approach to measuring risk exposure

- Many positions: how to compress & compare?
- Basic idea: represent as simple portfolios
 - statistical evidence: cross section of bonds driven by “few shocks”
 - can replicate *any* fixed income position by portfolio of “few bonds”
- Portfolios = additive measure of risk & exposure, comparable
 - across positions (do derivative holdings hedge other business?)
 - across institutions (systemic risk?)
 - to simple portfolios implied by economic models
Ingredients

- Valuation model
 - parsimonious representation of cross section of bonds
 - allow for interest rate and credit risk
 - can depend on calendar time; cross sectional fit is key
 - this paper: one shock = shift in level of BB bond yield

- Bank data requirements
 - maturity & credit risk by position \(\rightarrow\) payment streams
 - detailed data on loans & securities \(\rightarrow\) apply valuation model directly
 - coarser data (e.g. derivatives) \(\rightarrow\) estimate positions first

- Results for large US banks
 - traditional business = long bonds financed by short debt
 - interest rate derivatives often do not hedge traditional business
 - similar exposures to aggregate risk across banks
Related literature

- Bank regulation (Basel II):
 - separately consider credit & market risk
 - credit risk: default probabilities from credit ratings or internal statistical models
 - capital requirements for different positions
 - look at positions one by one

- Measures of exposure
 - regress stock returns on risk factor, e.g. interest rates
 Flannery-James 84, Venkatachalam 96, Hirtle 97, English, van den Heuvel, Zakrajsek 12, Landier, Sraer & Thesmar 13...
 - stress tests: Brunnermeier-Gorton-Krishnamurthy 12, Duffie 12

- Measures of tail risk (VaR etc.)
 - Acharya-Pederson-Philippon-Richardson 10, Kelly-Lustig-van Nieuwerburgh 11

- Bank position data
 - derivatives: Gorton-Rosen 95, Stulz et al. 08, Hirtle 08
 - crisis: Adrian & Shin 08, Shin 11, He & Krishnamurthy 11
Outline

- Replication with spanning securities
 - bond/debt positions \(\approx\) simple portfolios in a few bonds
- One factor model of bond values
 - fit to bonds with & without credit risk
- Replication of loans, securities & deposits
- Interest rate swaps
 - definitions and data
 - estimation of replicating portfolio
- Example results for large US banks
Replication with spanning securities

- Factor structure with normal shocks
 - consider payoff stream with value $\pi (f_t, t)$
 - factors $f_t = \mu (f_t, t) + \sigma_t \epsilon_t, \; \epsilon_t \sim \mathcal{N} (0, I_K \times K)$

- Change in value of payoff stream π between t and $t + 1$
 $$\pi (f_{t+1}, t + 1) - \pi (f_t, t) \approx a_t^\pi + b_t^\pi \epsilon_{t+1}$$

- form replicating portfolio from $K + 1$ spanning securities
 - always include θ^1_t one period bonds (= cash) with price e^{-i_t}
 - use $\hat{\theta}_t$ other securities, e.g. longer bonds

- choose $\theta^1_t, \hat{\theta}_t$ to match change in value π for all ϵ_{t+1}:
 $$\begin{pmatrix} \theta^1_t & \hat{\theta}'_t \end{pmatrix} \begin{pmatrix} e^{-i_t} i_t & 0 \\ \hat{a}_t & \hat{b}_t \end{pmatrix} \begin{pmatrix} 1 \\ \epsilon_{t+1} \end{pmatrix} = \begin{pmatrix} a_t^\pi & b_t^\pi \end{pmatrix} \begin{pmatrix} 1 \\ \epsilon_{t+1} \end{pmatrix}.$$

- no arbitrage: value of replicating portfolio at $t = \text{value } \pi (f_t, t)$
Implementation with one factor

- **single factor** $f_t =$ credit risky short rate (BB rating)
- to relate value of other payoff streams π to f, estimate joint distribution of risky & riskless yields
- pricing kernel

\[
M_{t+1} = \exp(-\delta_0 - \delta_1 f_t - \lambda_t \varepsilon_{t+1} + \text{Jensen term})
\]
\[
\lambda_t = l_0 + l_1 f_t
\]

- riskless zero coupon bond prices as functions of f_t

\[
P_t^{(n)} = E_t \left[M_{t+1} P_{t+1}^{(n-1)} \right], \quad P_t^{(0)} = 1
\]
\[
P_t^{(n)} = \exp(A_n + B_n f_t)
\]

- find $B_n < 0$ (high interest rates, low prices)
- also $\lambda_t < 0$ so $E_t[\text{excess return on } n \text{ period bond}] = B_{n-1} \sigma \lambda_t > 0$
Credit risk

- risky bonds **default**; recovery value proportional to price
- payoff per dollar invested

\[\Delta_{t+1} = \exp \left(-d_0 - d_1 f_t - (\tilde{\lambda}_t - \lambda_t) \varepsilon_{t+1} + \text{Jensen term} \right) \]

\[\tilde{\lambda}_t = \tilde{l}_0 + \tilde{l}_1 f_t \]

- risky zero coupon prices

\[\tilde{P}_t^{(n)} = E_t \left[M_{t+1} \Delta_{t+1} \tilde{P}_t^{(n-1)} \right], \quad \tilde{P}_t^{(0)} = 1 \]

\[\tilde{P}_t^{(n)} = \exp (\tilde{A}_n + \tilde{B}_n f_t) \]

- spreads

\[\tilde{i}_t - i_t = d_0 + d_1 f_t \]

- estimation finds

 - \(d_1 > 0 \) spreads high when credit risk is high
 - \(\tilde{B}_n < 0 \) (high interest rates or default risk, low prices)
 - \(\tilde{\lambda}_t > \lambda_t \) low payoff when credit risk \(\varepsilon_{t+1} \) high
 - \(E_t[\text{excess return}] = (\tilde{B}_{n-1} \sigma - (\tilde{\lambda}_t - \lambda_t)) \lambda_t > 0 \)
Replication with one factor

- Change in bond value $\pi_t = \pi(f_t, t)$

 $$\pi_{t+1} - \pi_t \approx \pi_t \left(\mu_t + \sigma_t \varepsilon_{t+1} \right)$$

 expected return volatility

- Cash

 $$\mu_t = i_t, \quad \sigma_t = 0$$

- Represent other bond $\tilde{\pi}_t = \tilde{\pi}(f_t, t)$ as simple portfolio

 $$\tilde{\pi}_t (\tilde{\mu}_t + \tilde{\sigma}_t \varepsilon_{t+1}) = \omega_t \pi_t (\mu_t + \sigma_t \varepsilon_{t+1}) + K_t i_t$$

- $\pi = \text{value of 5-year riskless bond}$
- Simple portfolios = holdings ω_t of 5-year riskless bond & cash K_t
- Portfolio weight on 5-year bond increasing in maturity, risk of $\tilde{\pi}$
 - 2 year Treasury: 40% 5-year bond, 60% cash
 - 10 year Treasury: 140% 5-year bond, −40% cash
 - 10 year BBB corporate bond: 180% 5-year bond, −80% cash
Outline

• Basic replication argument
 ▶ bond/debt positions \(\approx \) simple portfolios in a few bonds

• One factor model of bond values
 ▶ fit to bonds with & without credit risk

• Replication of loans, securities, deposits

• Interest rate swaps
 ▶ definitions and data
 ▶ estimation of replicating portfolio

• Example results for large US banks
From regulatory data to simple portfolios

- Quarterly Call report data on bank balance sheets
 - loans: book value, maturity, credit quality
 - securities: fair values, maturity, credit quality
 - cash, deposits & fed funds

- Loans
 - start from data on book value & interest rates
 - derive stream of promises = bundle of (risky) zero coupon bonds
 - replicate with simple portfolio as above

- Securities
 - observe fair values by maturity & issuer (private, government)
 - use public, private bond prices to compute simple portfolio
 - bonds held for trading: rough assumptions on maturity

- Deposits & money market funds
 - mostly short term (= cash)

- Represent as simple portfolios in 5-year bond & cash
JP Morgan Chase: simple portfolio holdings

![Graph showing trillions of US cash and old FI holdings from 1996 to 2011. The graph includes two lines: red for cash, old FI and green for 5 year, old FI. There is a significant increase in the green line around 2008, followed by a steep decline.](image-url)
Outline

- Basic replication argument
 - bond/debt positions \(\approx \) simple portfolios in a few bonds
- One factor model of bond values
 - fit to bonds with & without credit risk
- Replication of loans, securities & deposits
- Interest rate swaps
 - definitions and data
 - estimation of replicating portfolio
- Example results for large US banks
Notionals of Interest Rate Derivatives of US Banks

- **1995\text{–}2000\text{–}2005\text{–}2010**
- **20\text{–}40\text{–}60\text{–}80\text{–}100\text{–}120\text{–}140\text{–}160**
- **Trillions $US**
- **all contracts\swaps**

Begenau, Piazzesi, Schneider () Cambridge Oct 11, 2013 15 / 32
Swap payoffs

- Counterparties swap fixed vs floating payments \propto notional value N

Payments, Example: 1-Year Swap, Notional = $1

- Direction of position: pay-fixed swap or pay-floating swap
- "fixed leg" := fixed payments + N at maturity; value falls w/ rates
- "floating leg": = floating payments + N at maturity; value = N
Valuation of swaps

- Discount fixed leg payoffs w/ bond price $P_{t}^{(m)}$, annuity price $C_{t}^{(m)}$

 \[
 \text{value of fixed leg} = N \left(s \, C_{t}^{(m)} + P_{t}^{(m)} \right)
 \]

- Direction: $d = 1$ for pay fixed, -1 for pay floating

- Fair value of individual swap position (d, m, s)
 \[
 N \, d \left(1 - \left(s \, C_{t}^{(m)} + P_{t}^{(m)} \right) \right) =: N \, d \, F_{t} (s, m)
 \]

- Inception date: swap rate set s.t. $F_{t} (s, m) = 0$

- After inception date
 - pay fixed swap gains \Leftrightarrow rates increase
 - pay floating swap gains \Leftrightarrow rates fall

- Fair value of bank’s swap book
 \[
 FV_{t} = \sum_{d, m, s} N_{t}^{d,m,s} \, d_{t} \, F_{t} (s, m)
 \]
Data & institutional detail

- Call report derivatives data
 - notional
 - positive & negative fair values (marked to market)
 - "for trading" vs "not for trading"
 - maturity buckets

- Intermediation
 - large interdealer positions
 - dealers incorporate bid-ask spread into swap rates
 - data: bid-ask spreads (Bloomberg), net credit exposure (recent call reports)
 - subtract rents from intermediation from fair values, derive net notionals from trading on own account

- Unknown: directions of trade, locked in swap rates
Concentrated Holdings of Interest Rate Derivatives

Trillions $US

1995 2000 2005 2010

for trading
not for trading
top 3 dealers

Begenau, Piazzesi, Schneider ()
Cambridge Oct 11, 2013 19 / 32
Data & institutional detail

● Call report derivatives data
 ▶ notionals
 ▶ positive & negative fair values (marked to market)
 ▶ "for trading" vs "not for trading"
 ▶ maturity buckets

● Intermediation
 ▶ large interdealer positions
 ▶ dealers incorporate bid-ask spread into swap rates
 ▶ data: bid-ask spreads (Bloomberg),
 net credit exposure (recent call reports)
 ▶ subtract rents from intermediation from fair values,
 derive net notionals from trading on own account

● Unknown: directions of trade, locked in swap rates
Gains from trade on own account

- Observation equation for "multiple" = fair value per dollar notional:

\[\mu_t = d_t \ F_t (\bar{s}_t, \bar{m}_t) + \varepsilon_t \]

- Data
 - fair values (exclude intermediation rents)
 - net notionals
 - \(\bar{m}_t \) = average maturity
 - bond prices contained in \(F_t \)

- Estimation
 - prior over unknown sequence \((d_t, \bar{s}_t) \)
 - measurement error \(\varepsilon \sim \mathcal{N} (0, \sigma_\varepsilon^2) \)
Observation equation for fair value per dollar notional:

\[\mu_t = d_t F_t (\bar{s}_t, \bar{m}_t) + \varepsilon_t \]

- For each direction \(d_t \), can find swap rate to exactly match \(\mu_t \)
- For example, positive gains \(\mu_t > 0 \) require
 - pay fixed \(d_t > 0 \) & low locked-in rate \(\bar{s}_t \) than current rate \(s_t \)
 - pay floating \(d_t < 0 \) & high locked-in rate \(\bar{s}_t \) than current rate \(s_t \)

- Which is more plausible? Look at swap rate history!
Estimation details

- Fix $\text{var} (\varepsilon_t) = \text{var} (\mu_t) / 10$
- Compare two priors over sequence (d_t, \bar{s}_t)

1. Simple date-by-date approach
 - $\Pr (d_t = 1) = \frac{1}{2}$
 - prior over swap rate = empirical distribution over last 10 years
JP Morgan Chase: swap position

notionals

$ trillions

1995 2000 2005 2010
0 20 40 60

multiple μ_t (%)

1995 2000 2005 2010
-2 0 2 4

avg maturity swap rate (% p.a.)

2000 2005 2010
2 4 6
JP Morgan Chase: swap position

notionals

multiple μ_t (%)

posterior Pr(pay fixed)

avg maturity swap rate (% p.a.)
JPMorgan Chase: swap position

![Graphs showing JPMorgan Chase's swap position](image)

- **Notionals ($ trillions)**: Show the increase in notional values from 1995 to 2010.
- **Multiple μ_t (%)**: Illustrate the variation in multiple μ_t over the same period.
- **Posterior Pr(pay fixed)**: Display the probability distribution of paying fixed for the same years.
- **Avg maturity swap rate (% p.a.)**: Graph the average maturity swap rate from 2000 to 2010.
Estimation details

- Fix $\text{var} (\varepsilon_t) = \text{var} (\mu_t) / 10$
- Compare two priors over sequence (d_t, \bar{s}_t)

1. Simple date-by-date approach
 - $\Pr (d_t = 1) = \frac{1}{2}$
 - prior over swap rate = empirical distribution over last 10 years

2. “Dynamic trading prior”
 - symmetric 2 state Markov chain for d_t with prob of flipping $\phi = .1$
 - draw s_0 from empirical distribution
 - update swap rate conditional on evolution of d_t and notionals
 a. increase exposure, same direction
 adjust swap rate proportionally to share of new swaps
 b. decrease exposure, same direction
 swap rate unchanged
 c. switch direction
 offset existing swaps & initial new position at current rate
JPMorgan Chase: swap position

Notionals

- **$ trillions**
- **Years:** 1995, 2000, 2005, 2010
- **Graph:** Showing the trend of notionals over the years.

Multiple μ_t (%)

- **Years:** 1995, 2000, 2005, 2010
- **Graph:** Showing the trend of multiple μ_t over the years with data and estimate lines.

Posterior Pr(pay fixed)

- **Years:** 1995, 2000, 2005, 2010
- **Graph:** Showing the trend of posterior probability of pay fixed.

Avg Maturity Swap Rate (% p.a.)

- **Years:** 2000, 2005, 2010
- **Graph:** Showing the trend of average maturity swap rate with different maturity and rate data estimates.
Summary

- Portfolio methodology to both measure and represent exposures in bank positions
- Results for top dealer banks
 Derivatives often increase exposure to interest rate risk.
- Possible models of banks
 - risk averse agents who use derivatives to insure (no!)
 - agents who insure others
 (bond funds? foreigners? those who don’t expect bailouts?)
- Next step: models with heterogeneous institutions, informed by position data represented as portfolios...