Booms and Banking Crises

F. Boissay, F. Collard and F. Smets

Macro Financial Modeling Conference
Boston, 12 October 2013
The views expressed in this presentation are our own and do not necessarily reflect those of the European Central Bank or the Eurosystem.
Motivation/Objective

- Better understand the dynamics of financial and real business cycles
- A few features are common to financial recessions (i.e. recessions concomitant with banking crises):
 - Fact #1: They are rare events
 - Fact #2: They are deeper and last longer
 - Fact #3: Unlike other types of recessions, financial recessions follow credit booms
Motivation/Objective

Financial recession statistics

<table>
<thead>
<tr>
<th></th>
<th>Financial</th>
<th>Other</th>
<th>Severe</th>
<th>Mild</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (%)</td>
<td>2.36</td>
<td>8.93</td>
<td>4.05</td>
<td>4.05</td>
</tr>
<tr>
<td>Duration (years)</td>
<td>2.32***</td>
<td>1.65</td>
<td>2.46***</td>
<td>1.25</td>
</tr>
<tr>
<td>Magnitude (%)</td>
<td>-6.84***</td>
<td>-3.75</td>
<td>-9.28***</td>
<td>-0.89</td>
</tr>
</tbody>
</table>

Credit Boom

- % credit growth 2 years before peak (a) | 4.56*** | 0.01 | 1.33 | 0.40 |

Credit Crunch

- % credit growth 2 years after peak (a) | -3.59* | -1.24 | -1.69 | -2.44 |

Source: Schularik et al. (2011), data for 14 OECD countries, 1870-2008. Crises defined as in Laeven and Valencia (2008); *,**,***: the difference is statistically significant at 10%, 5%, 1%; (a) HP–filtered credit.
In most DSGE models financial recessions are big negative shocks amplified
Can explain Facts #1 & #2
Cannot explain Key Fact #3 ← crises are not random
Our Framework

- Textbook stochastic optimal growth model (RBC)
- Heterogenous banks with intermediation and storage technologies
- Interbank market subject to MH and AI
- A banking crisis is an interbank market freeze
- Spill-over and feedback effects between the interbank market, the retail corporate loan market, and the real economy
Main Results

1. Normal times feature productivity–driven business cycles with a small financial accelerator; a crisis every 42 years.
Main Results

1. Normal times feature productivity–driven business cycles with a small financial accelerator; a crisis every 42 years.

2. The typical banking crisis follows an unusually long sequence of small, positive, transitory productivity shocks — No need for a large negative financial shock.
Main Results

1. Normal times feature productivity–driven business cycles with a small financial accelerator; a crisis every 42 years.

2. The typical banking crisis follows an unusually long sequence of small, positive, transitory productivity shocks — No need for a large negative financial shock

3. High productivity generates a credit boom and a ballooning banking sector
Main Results

1. Normal times feature productivity–driven business cycles with a small financial accelerator; a crisis every 42 years.

2. The **typical banking crisis follows an unusually long sequence of small, positive, transitory productivity shocks** — No need for a large negative financial shock.

3. High productivity generates a credit boom and a ballooning banking sector.

4. As productivity gains peter out, excess savings arise ("saving glut") and interest rates fall; counterparty fears rise in the interbank market, which may lead to a freeze and banking crisis.
Main Results

1. Normal times feature productivity–driven business cycles with a small financial accelerator; a crisis every 42 years.

2. The typical banking crisis follows an unusually long sequence of small, positive, transitory productivity shocks — No need for a large negative financial shock.

3. High productivity generates a credit boom and a ballooning banking sector.

4. As productivity gains peter out, excess savings arise ("saving glut") and interest rates fall; counterparty fears rise in the interbank market, which may lead to a freeze and banking crisis.

5. The subsequent financial recession is deep and long because of a credit crunch; credit–to–GDP ratio predicts financial recessions.
Related literature

 - Full equilibrium non-linearities, such as sudden bank runs

- Bianchi (2009), Bianchi-Mendoza (2010):
 - Endogenous interest rates play a key role

- Brunnermeier-Sannikov (2012), He-Krishnamurthy (2012):
 - Typical crisis follows a rare, long sequence of positive TFP shocks
 - Typical crisis identified as a bank run, not as a binding borrowing constraint

- Gertler-Kiyotaki (2012)
 - Bank run is market based and rationally expected
Model setup

Overview

- Bank deposits/equity a_t
- Return on savings $r_t a_t$
- Intermediation cost
- Corporate Loans k_t
- Loan payments $p_t k_t$
Firm: \[\max \{k_t, h_t\} \pi_t = F(k_t, h_t; z_t) + (1 - \delta)k_t - R_t k_t - w_t h_t \]

Household:

\[
\max_{\{a_{t+\tau+1}, c_{t+\tau}, h_{t+\tau}\}_{\tau=0}^{\infty}} \mathbb{E}_t \sum_{\tau=0}^{\infty} \beta^{\tau} u(c_{t+\tau}, h_{t+\tau})
\]

subject to budget constraint

\[c_t + a_{t+1} = r_t a_t + w_t h_t + \pi_t + \chi_t \]

- Notice that \(r_t \leq R_t \) (spread) and \(k_t \leq a_t \) (credit crunch)
Banks are atomistic, competitive, and price takers.

Continuum of heterogeneous 1–period banks p, with cdf $\mu(p)$ over $(0, 1)$.

Bank p’s net return per unit of corporate loan is pR_t.

It is beneficial to relocate funds, but relocation is impaired due to:

- Asymmetric information: p is private information.
- Moral hazard: bank p may borrow ϕ_t and walk away (“diversion”).
Banks are atomistic, competitive, and price takers

Continuum of heterogeneous 1-period banks p, with $cdf \mu(p)$ over $(0, 1)$

Bank p’s net return per unit of corporate loan is pR_t

It is beneficial to relocate funds, but relocation is impaired due to:

- **Asymmetric information**: p is private information
The Banking Sector

- Banks are atomistic, competitive, and price takers
- Continuum of heterogeneous 1–period banks \(p \), with \(cdf \ \mu(p) \) over \((0, 1)\)

\[
\begin{align*}
& \text{Collect Deposits } \ a_t \\
& \text{Draw skill } \ p \in (0, 1) \\
& \text{Die}
\end{align*}
\]

- Bank \(p \)'s net return per unit of corporate loan is \(pR_t \)
- It is beneficial to relocate funds, but relocation is impaired due to:
 - **Asymmetric information**: \(p \) is private information
 - **Moral hazard**: bank \(p \) may borrow \(\phi_t \) and walk away ("diversion")
Bank p has 4 options:

1. Lend to other banks on the interbank market $\rightarrow \rho_t$
2. Store goods $\rightarrow \gamma$
3. Raise funds ϕ_t from interbank market and lend to firm $\rightarrow pR_t (1 + \phi_t) - \rho_t \phi_t$
4. Raise funds ϕ_t from interbank market and walk away $\rightarrow \gamma (1 + \theta \phi_t)$

Incentives to divert depend on the corporate loan rate: the lower R_t, the higher these incentives, and the more counterparty fears on the interbank market.
The Borrowing Bank’s Problem

- Borrowing bank \(p \) solves:
 \[
 \max_{\phi_t} r_t(p) \equiv pR_t(1 + \phi_t) - \rho_t \phi_t
 \]

 \begin{align*}
 PC : & \quad pR_t(1 + \phi_t) - \rho_t \phi_t \geq \rho_t \quad \Rightarrow \quad p \geq \bar{p}_t \equiv \rho_t / R_t \\
 IC : & \quad \gamma (1 + \theta \phi_t) \leq \rho_t \quad \Rightarrow \quad \phi_t = (\rho_t - \gamma) / \theta \gamma
 \end{align*}

- Profits are fully distributed to household:
 \[
 r_t \equiv \int_0^1 r_t(p) \, d\mu(p)
 \]
Interbank Market Equilibrium

Interbank market clearing condition

Supply \((+)\)

\[
\mu(\bar{p}_t) = \frac{(1 - \mu(\bar{p}_t)) \times \phi_t}{\phi_t}
\]

"extensive margin" \((-\)}

"intensive margin" \((+)\)

Demand bends backward \((+ or -)\)

with \(\bar{p}_t \equiv \rho_t / R_t\) and \(\phi_t = (\rho_t - \gamma) / \theta \gamma\)

Two opposite effects on aggregate demand of a decrease in \(\rho_t\)
Interbank Market Equilibrium

The interbank market freezes when the retail corporate loan rate is below a threshold.
Interbank Market Equilibrium

The interbank market freezes when the retail corporate loan rate is below a threshold.
Interbank Market Equilibrium
The interbank market freezes when the retail corporate loan rate is below a threshold.
Absorption Capacity and Market Freeze

- **Proposition (Interbank loan market freeze):** The interbank loan market is at work if and only if \(a_t \leq \bar{a}_t \equiv f_k^{-1}(\bar{R} + \delta - 1; z_t) \), and freezes otherwise.

- The interbank market improves efficiency but freezes when \(R_t < \bar{R} \)
- In general equilibrium, \(R_t \) is driven by savings \((a_t) \) and technology \((z_t) \). Hence the interbank market freezes when \(a_t > \bar{a}(z_t) \)
- **Threshold** \(\bar{a}(z_t) \) is the banking sector's "absorption capacity"
Calibration of the real side is standard

Financial sector \((\gamma, \theta, \mu(.))\) is calibrated so that:

- Crisis probability is 2.3%
- Average interest rate spread is 1.7%
- Average corporate loan rate of 4.4%

The model is solved numerically by a collocation method
Quantitative Analysis
Optimal savings rule: exogenous versus endogenous crises

Variety of crises: shock–driven (S) and credit boom–driven (U)

History suggests that credit–boom driven crises prevail

Note: Dashed line: 45° line where $a_{t+1} = a_t$.
Quantitative Analysis

Typical path to crisis

- Dynamics in normal times,
- Dynamics during a crisis,
- Dynamics of \bar{a}_t,
- Average across simulations,
- 66% Confidence band around typical path,
- Underlying TFP innovations (ε_t).
Quantitative Analysis

Typical path to crisis

- Corporate Loan Rate
- Return on Deposits
- Credit/Output
Quantitative Analysis

Typical path to crisis

Output

Consumption

1-step ahead Proba.
At the beginning, a positive shock brings TFP above its mean

- Credit demand rises. Return on savings goes up. The household accumulates assets for *consumption smoothing*

TFP goes down back to mean but remains above it for a long time

- Credit demand decreases, while the household keeps on accumulating savings; interest rates go down

As the probability of a crisis increases, the household maintains savings to hedge against a more likely loss of revenue, which works to reduce interest rates and to raise the likelihood of a crisis even further — *saving glut externality*

A crisis breaks out as the corporate loan R_t rate crosses threshold \bar{R}
Quantitative Assessment

Financial recession statistics

<table>
<thead>
<tr>
<th></th>
<th>Financial</th>
<th>Other</th>
<th>Severe</th>
<th>Mild</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (%)</td>
<td>2.35</td>
<td>8.94</td>
<td>3.76</td>
<td>3.76</td>
</tr>
<tr>
<td>Duration (years)</td>
<td>2.08</td>
<td>1.39</td>
<td>2.22</td>
<td>1.04</td>
</tr>
<tr>
<td>Magnitude (%)</td>
<td>-12.60</td>
<td>-4.98</td>
<td>-11.32</td>
<td>-3.28</td>
</tr>
</tbody>
</table>

Credit Boom

- % credit growth 2 years before peak (a)
 - Financial: 3.81
 - Other: 0.11
 - Severe: 2.33
 - Mild: 0.06

Credit Crunch

- % credit growth 2 years after peak (a)
 - Financial: -5.09
 - Other: 0.09
 - Severe: -2.97
 - Mild: 0.02

(a) HP–filtered credit.
Welfare

%-Loss in permanent consumption

<table>
<thead>
<tr>
<th>Financial frictions</th>
<th>Deficient institutions</th>
<th>Externalities</th>
<th>Fin. under-development</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBA – DEA</td>
<td>FBA – CEA</td>
<td>CEA – DEA</td>
<td>DEA – NIM</td>
</tr>
<tr>
<td>2.20</td>
<td>1.53</td>
<td>0.61</td>
<td>4.61</td>
</tr>
</tbody>
</table>

FBA: Fist Best Allocation; DEA: Decentralized Equilibrium Allocation
CEA: Constrained Efficient Allocation; NIM: No Interbank Market
Concluding Remarks

- Develop a simple quantitative macro-model with banking crises, where crises are not caused by large, negative, financial shocks but rather by long sequences of small, positive, productivity shocks
- Credit booms are conducive to crises
- Highlight the role of consumption smoothing and saving glut externalities
- From a policy making perspective:
 - Framework for both crisis management and crisis prevention
 - DSGE-based probability of a crisis
THANK YOU
Return on Deposits and Corporate Loan Supply

- Return on deposits:

\[
R_t \left\{ \begin{array}{ll}
R_t \int_0^1 p \frac{d\mu(p)}{1-\mu(p)} & , \text{if an equilibrium with trade exists} \\
R_t \left(\frac{\gamma}{R_t} \mu \left(\frac{\gamma}{R_t} \right) + \int_0^{\frac{\gamma}{R_t}} p \, d\mu(p) \right) & , \text{otherwise.}
\end{array} \right.
\]

- Corporate loan supply

\[
k_t^s = \left\{ \begin{array}{ll}
a_t & , \text{if an equilibrium with trade exists} \\
\left(1 - \mu \left(\frac{\gamma}{R_t} \right) \right) a_t & , \text{otherwise}
\end{array} \right.
\]
Interest Rates
Endogenous and exogenous sources of instability

(a) Assets \((a_t) \) as endogenous source of crisis

(b) Productivity \((z_t) \) as exogenous source of crisis
Optimal Decision Rules
Typical paths to crisis without smoothing or externality

- Baseline;
- No saving glut externality;
- Constant saving rate.
Quantitative Assessment
Dynamics of output and credit gaps around recessions

(a) Financial Recessions

Output (% deviation about trend)

Credit (% deviation about trend)

Model, Data; 66% Confidence band (model)
Quantitative Assessment
Dynamics of output and credit gaps around recessions

(b) Normal Recessions

Output
(% deviation about trend)

Credit
(% deviation about trend)

Model, Data; 66% Confidence band (model)
Crisis Prediction

Type–I and Type–II errors

<table>
<thead>
<tr>
<th>Model Probability (benchmark)</th>
<th>Probability regressions</th>
<th>Logit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>z</td>
<td>a</td>
</tr>
<tr>
<td>R^2</td>
<td>—</td>
<td>0.03</td>
</tr>
<tr>
<td>F-Test</td>
<td>—</td>
<td>0.00</td>
</tr>
<tr>
<td>Type-I errors (%)</td>
<td>31.43</td>
<td>100.00</td>
</tr>
<tr>
<td>Type-II errors (%)</td>
<td>4.85</td>
<td>0.00</td>
</tr>
<tr>
<td>N. warnings</td>
<td>30,215</td>
<td>0</td>
</tr>
<tr>
<td>N. crises</td>
<td>11,739</td>
<td>11,739</td>
</tr>
<tr>
<td>N. obs (simul.)</td>
<td>468,769</td>
<td>468,769</td>
</tr>
</tbody>
</table>

Boissay - Collard - Smets

Booms and Banking Crises
Sensitivity Analysis

Financial recession statistics

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>σ</th>
<th>ν</th>
<th>θ</th>
<th>λ</th>
<th>σ_z</th>
<th>ρ_z</th>
<th>Altern.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>0.25</td>
<td>0.15</td>
<td>20</td>
<td>0.025</td>
<td>0.70</td>
<td>TFP</td>
</tr>
<tr>
<td>Frequency (%)</td>
<td>2.35</td>
<td>4.74</td>
<td>3.45</td>
<td>5.87</td>
<td>5.73</td>
<td>4.56</td>
<td>4.34</td>
<td>2.32</td>
</tr>
<tr>
<td>Duration (years)</td>
<td>2.08</td>
<td>1.75</td>
<td>2.31</td>
<td>1.72</td>
<td>1.84</td>
<td>2.09</td>
<td>2.22</td>
<td>1.99</td>
</tr>
<tr>
<td>Magnitude (%)</td>
<td>-12.60</td>
<td>-10.61</td>
<td>-16.33</td>
<td>-9.29</td>
<td>-12.05</td>
<td>-15.40</td>
<td>-17.82</td>
<td>-10.86</td>
</tr>
</tbody>
</table>
Endogenous Cycles
Two deterministic versions of the model (constant TFP)

(b) Asymptotic dynamics

\[\theta = 0.26 \]

\[\theta = 0.27 \]

Dynamics of aggregates, \(\tilde{\omega}_t \).
Model With Both TFP and Financial Shocks

Typical path to crisis

- Dynamics in normal times,
- Dynamics in a systemic banking crisis,
- Dynamics of \overline{a}_t,
- long-run average,
- Dynamics in the constrained efficient Central Planner Allocation,
- 66% Confidence Band.