Discussion of “Which Financial Frictions?”
by T. Adrian, P. Colla and H. Shin

Guido Lorenzoni

BFI Conference May 2012
Heterogeneity

• Models with financial frictions distinguish “special” agents from other investors
• E.g. Kiyotaki-Moore “farmers” and “gatherers”

• **Special agents**: can extract more utils from some asset, so they are that asset’s natural buyers

• Crucial observation: the balance sheet of these agents matters
• In applications to banking, the special agents are the banks
• What is the source of this heterogeneity?
 • Differences in technology (Kiyotaki-Moore)
 • Differences in beliefs (Geanakoplos)
 • Differences in risk-aversion (Garleanu-Pedersen, this paper)
Leverage

Initial balance sheet

\[n = (p + d) k - (1 + r) b \]

Balance sheet after investment decision

\[pk' = n + b' \]

If shock to asset price

\[\Delta n = \Delta p \cdot k \]
Leverage

\[L = \frac{b'}{pa'} \]

In standard balance sheet models \(L \) does not move much

\[\Delta [pk] \approx \frac{1}{1 - L} \cdot \Delta n \]

ACS: for banking sector is mostly

\[\Delta [pk] \approx \Delta \left[\frac{1}{1 - L} \right] \cdot n \]
• Maybe we should look at elasticities rather than level changes

\[
\frac{\Delta [pk]}{pk} \approx \Delta \left[\frac{1}{1-L} \right] \cdot n + \frac{1}{1-L} \cdot \frac{\Delta n}{n}
\]

• Marginal leverage versus average leverage

• What really matters for transmission mechanism is how a dollar of capital that frees up can be reinvested
• Example household: average leverage is countercyclical because b and k do not move much while p moves

• However, does it mean that a household could buy, say, a car with the same downpayment when house prices go down?

• For a pure security firm, marginal leverage $=\text{average leverage} = \text{margin}$
Value at risk

Model idea: relation between risk, leverage, and risk premia

Risk goes up \rightarrow VaR banks delever \rightarrow
\rightarrow Risk averse investors have to step in \rightarrow Risk premia go up

Relatively inelastic supply of risky asset (demand of funds by risky borrowers)

Here: explore feedback from leverage to risk
(Brunnermeier-Pedersen)
Risk feedback

- Tree in unit supply with dividends d_t i.i.d.
- d_t continuous density on $[0, \infty)$
- Bonds in zero net supply
- Infinitely lived risk averse agents with log utility
- OLG of risk neutral agents born with d_t

$$p_t k_t^N = d_t + b_t$$

- Collateral constraint

$$(1 + r_t) b_t \leq \lambda p_t k_t^N$$
VaR

- How is λ determined?

$$\Pr [p_{t+1} \leq \lambda p_t] = \alpha$$

- Extreme case $\alpha = 0$
- Liabilities of risk neutral agent must be perfectly safe

Market clearing

$$k_t^N + k_t^A = 1$$
Two equilibria

Good equilibrium

• no price risk

\[p_t = \frac{\beta}{1 - \beta} E [d_{t+1}] \]

\[1 + r_t = \frac{1}{\beta} \]

• \(\lambda = 1 \) so risk neutral agents hold all risk

• risk averse agents only hold bonds, \(k_t^A = 0 \)
Two equilibria (continued)

Bad equilibrium

- price risk

\[p_t = \frac{\beta}{1 - \beta} d_t \]

- \(\lambda = 0 \) risk neutral agent cannot lever at all, they only buy a fixed fraction of trees with their endowment
- risk averse agents only hold risky trees, \(k_t^A > 0 \) constant