Discussion of “The I Theory of Money” by M. Brunnermeier and Y. Sannikov

Stavros Panageas¹

¹University of Chicago Booth and NBER

May 2012
Overview

- A novel and interesting theory of money.
- Money plays an important role as a store of value.
- It is a substitute for intermediaries.
 - Intermediaries help channel capital to productive uses.
 - Their ability to do so depends on their wealth as compared to aggregate capital.
- The value of money depends on the extent of intermediation.
Model

- Households
 - Technologies are denoted by ω.
 - Production technologies $\alpha^\omega - i_t^\omega$.

\[
\frac{dk_t}{k_t} = (\Phi(i_t) - \delta^\omega) \, dt + d\epsilon_t^\omega
\]

- The term $d\epsilon_t^\omega$ reflects Brownian fundamental shocks to technology ω.
- Better types have higher α^ω and lower δ^ω.

- Continuous switching between technologies.
- Clever trick to ensure that the distribution of wealth across technology types is irrelevant.
- Log utilities.
Model

- Intermediaries
 - Log utilities.
 - Can lend to productive households.
 - Can invest in every technology.
 - A wedge between the rate of return of households and intermediaries equal to ω.

- Markets for Capital, money and consumption goods
 - A market for capital K_t.
 - A market for gold with price P_t.
 - Gold is fundamentally unproductive, but serves as a store of value.
Solution highlights

- Euler equation for the households

\[
E[dr^\omega_t - dr^M_t] \leq \text{Cov} \left(d\epsilon^\omega_t + d\epsilon^q_t - d\epsilon^M_t, d\epsilon^M_t + \frac{\xi(\eta_t, \omega)q_t}{\theta(\omega)(q_t + p_t - \eta_t)}(d\epsilon^\omega_t + d\epsilon^q_t - d\epsilon^M_t) \right)
\]

- Does continuous changing of types imply that there is no intra-cohort heterogeneity?

- Important point: A household of type \(\omega \) can only invest in a technology of type \(\omega \) and “money.”

- Euler equation for intermediaries

\[
E[dr^\omega_t - \omega dt - dr^M_t] \leq \text{Cov} \left(d\epsilon^\omega_t + d\epsilon^q_t - d\epsilon^M_t, d\epsilon^N_t \right),
\]

where

\[
d\epsilon^N_t = d\epsilon^M_t + \frac{q_t}{\eta_t} \int_\Omega \zeta_t(\omega')(d\epsilon^\omega'_t + d\epsilon^q_t - d\epsilon^M_t) d\omega'_t
\]

- Intermediaries invest in all technologies
Solution highlights

- Single state variable that characterizes the equilibrium
- The ratio of intermediary capital to aggregate wealth
- When intermediaries have a lot of capital
 - Value of money is small.
 - Lots of “inside” money.
 - They can “borrow” from unproductive households and channel funds to productive uses.
- When intermediaries have little capital
 - Value of money is high.
 - Little “inside” money.
 - Agents cannot invest as much in productive resources.
1. Riskless Bonds

- Money serves mainly one purpose in this model.
- It is a store of value.
- Would money still have value if agents can trade in a zero net supply, riskless bonds with dynamics

\[\frac{dB_t}{B_t} = r_t \, dt , \]

where \(r_t \) is endogenously determined.
- It would be interesting if money had value, even if agents can trade in riskless bonds.
- Possibly the inequalities in the Euler equations could play a role?
2. Models of limited participation

- The paper (setup/results) resembles what we know about models of limited participation. (Saito, Basak and Cuoco, etc.)
 - More wealth in the hands of stock market participants:
 - More leverage in the economy,
 - Lower equity premium,
 - More investment, etc..
- Less wealth in the hands of stock market participants:
 - Less leverage in the economy,
 - Higher equity premium,
 - Lower real rates etc.
- Indeed, any model where agents hold different portfolios will imply similar joint behavior of the equity premium and the interest rate. (Chan and Kogan, Garleanu and Panageas etc.)
- This underscores the need to emphasize that changes in the price level are not just alternative expressions of the real interest rate.
3. Welfare

• If money can be printed at zero social cost,

• Friedman concluded that equalizing the private marginal opportunity cost (nominal interest rate) with the social cost implies a zero nominal interest rate.

• What is the analogue here? Flood the world with money?

• Also, the usage of Markov, non-history-dependent policies may be quite limiting in terms of analyzing monetary policy. (Woodford)
4. The crisis and the existing models

- One striking thing about the recent crisis
 - This was a household credit crisis,
 - ... and then a government debt crisis.
 - Very low household savings rates fueled by rising real estate prices.
 - Ironically, during the period of the “savings glut”, the corporate sector accounted for the large amounts of savings.

- Our existing models
 - attribute everything to mis-allocation of capital in the corporate sector.
 - There are good projects out there and they simply don’t get financed.
 - ... But are corporations truly constrained in their investment given all the free cash flow that they have?