Interviews and the Assignment of Workers to Jobs

Ben Lester
Federal Reserve Bank of Philadelphia

Ronald Wolthoff
University of Toronto

June 2, 2012

Disclaimer: The views expressed here do not necessarily reflect the views of the Federal Reserve Bank of Philadelphia.
Motivation

- Large increase in unemployment in the latest recession.
- Heterogeneity is important.
 - Differential impact across skills, occupations, and sectors.
 - ‘Mismatch’ suggested as explanation for slow recovery.
- Heterogeneity causes information frictions: types are generally hard to observe.
- How do firms and workers form matches?
- The answer to this question has many implications:
 - Employment across skill groups;
 - Wages across skill groups;
 - Incentives to create vacancies;
 - Incentives to accumulate human capital;
 - ...
Search models provide the dominant theory of unemployment.

Classic setup: agents randomly sample from a distribution at a cost.

- (Virtually) no strategic decision making: no application or recruitment decisions.
- All workers and firms participate in the same market.
- Wages and matching rates are exogenous from agent’s point of view.
Directed Search

The directed search literature (Moen, 1997) provides an alternative.
- Firms choose wages to attract workers.
- Workers observe wages and decide to which firm to apply.
- Frictions arise because of coordination problems.

In this literature, there are generally no information frictions.
- Homogeneity (Burdett et al., 2001).
- Types are observable (Shimer, 2005; Shi, 2006).
- Sorting into a separating equilibrium (Shi, 2001).

This paper: worker types are private information, which can be learned through costly interviews.
Environment

- Static model with risk-neutral agents.
- Measure 1 of workers.
- Measure ν of identical firms each with one vacancy.
- Each worker can apply to one vacancy.
- Agents cannot coordinate their actions.
- Number of applicants at a firm follows a Poisson distribution with endogenous mean λ (queue length).
Heterogeneity in Productivity

- Workers are divided into M different types, $m = 1, \ldots, M$.
- Firms are divided into N different types, $n = 1, \ldots, N$.
- Worker types are private information.
- Application decision may reveal information about workers’ types.
- Alternatively, firm can learn an applicant’s type by screening or interviewing him. Each interview (except the first) costs k.
- Match between a firm of type n and a worker of type m creates $x_{m,n}$ units of output. Unmatched firms and workers produce 0.
Planner's Problem

1. **Allocate workers to firms**
 - Positive / negative assortative matching.
 - Pooling / separating worker types.
 - Queue length $\lambda_{m,n}$.
 - $L_{m,n} = \sum_{m'}^{M} \lambda_{m',n}$ as the queue of applicants at least as good as m.

2. **Provide screening instructions to each firm**
 - Balance trade-off: as more workers are being interviewed,
 - (+) the expected match quality increases.
 - (−) the incurred screening cost increases.
Lemma
Optimal screening policy is sequential: interview workers until one is found whose productivity equals/exceeds a certain cutoff μ.

Lemma
Optimal cutoff is independent of the number of applicants and the interview round, and equals the lowest μ_n such that

$$k > \chi^M \frac{\lambda \mu', n}{L_{1,n}} \cdot x_{\mu', n} - x_{\mu_n, n}.$$
Optimal Queue Lengths

- Choice of queue lengths is not trivial.
 - Complementarities provide an incentive for PAM.
 - High type workers and firms should both match with large probability.
- If k is sufficiently small, some low type workers should apply to high type firms (‘pooling’).
- If k is large, the low type applicants will crowd out higher types, and separating types might be preferable.
Planner’s Solution

Proposition
A solution to the planner’s problem exists.

Lemma
Firms receive applications from only one type $m \geq \mu$. Hence, firms hire the best type of worker that applies.

Lemma
There is pooling of multiple worker types for sufficiently small k, and full separation of worker types for sufficiently large k.
Planner’s solution can be decentralized through a process of directed search.

Upon entry, each firm posts and commits to a contract. Contract consist of a wage schedule $\{w_{m,n}\}$ and a hiring policy μ_n.

Workers observe all posted contracts before deciding to which firm to apply.

Workers’ application decisions endogenously determine the queue lengths.

Proposition

A market equilibrium exists and it is efficient.
Conclusion

- Model to study how information frictions influence labor market outcomes.
- Worker productivity is private information.
- Firms can learn the type of a worker through a costly interview.
- Alternatively, firms can try to induce sorting and type revelation through the contracts that they post.
- The market equilibrium is efficient.
- Pooling of worker types for sufficiently small screening cost.
- Separation of worker types for sufficiently large screening cost.