Empirically: countries accumulate substantial debt and reserves

Sovereign debt capacity puzzle
 - Cannot commit to repay; strategic default
 - Trouble generating sufficient debt in Eaton-Gersovitz (1981) setting
 - What are the costs of default?

Reserves worsen the problem
 - Complete markets: Bulow and Rogoff (1989) puzzle

Twin sovereign and banking crises
 - Empirical regularity (Reinhart and Rogoff (2011))
 - Missing from workhorse Eaton-Gersovitz models
Goal: framework to address these puzzles

Start from workhorse Eaton-Gersovitz setting, but
- No exogenous default costs
- Allow for reserve accumulation
- Can save in autarky

Add two key ingredients:
- Growth
- Liquidity provision

Sustained growth requires
- Invest in long term, high yielding, but illiquid projects
- Liquidity buffer needed for effective maturity transformation
Sources of liquidity:
- Self provision: hoard reserves
- Borrow: subject to sovereign risk
 - Sovereign debt smooth liquidity needs
 - On top of traditional consumption smoothing role

Costs of default and debt capacity:
- Insufficient reserves: liquidate projects
- Hoard more reserves: foregone investment/growth opportunities
- Costs higher during good times (better investment opportunities)
- Endogenously generates counter-cyclical sovereign default
• Trade-offs for reserve holdings:
 • Too much reserves \rightarrow forgone investments and consumption
 • Not enough reserves \rightarrow limits capacity for foreign liquidity; will have trouble with liquidity risk management
 • Interaction of investment/growth/liquidity risk management/sovereign risk pins down reserves

• Twin crises:
 • Apply Diamond and Dybvig (1983) logic to this setting
 • Endogenous feedback: sovereign risk \leftrightarrow domestic banking fragility \leftrightarrow output
 • War chest of reserves to stabilize domestic banking sector and increase sovereign debt capacity
Baseline Model: Households

- Infinite horizon. Small open economy.
- Liquidity modeled following Diamond and Dybvig (1983)
 - Continuum of ex-ante identical households
 - Fraction λ_t of households impatient
 - Liquidity needs λ_t time varying and exogenous
 - Endogenize later in twin crises model
 - Certainty equivalent value at start of the period:

$$U_t = \left[\lambda_t C_{1t}^{1-\eta} + (1 - \lambda_t) C_{2t}^{1-\eta} \right]^{\frac{1}{1-\eta}}$$

- Focus on planner’s problem: standard time separable preferences over U_t
Production & Liquidation Costs

- **AK model.**
 - Capital accumulation: \(K_{t+1} = (1 - \delta + i_t)K_t \)
 - Cost of investment: \(\phi(i_t)K_t, \ i_t \geq 0 \)

- **Production**
 - Produce \(Y_t = Z_tK_t \) seeds at the start of each period
 - Seeds ripen at the end of period.
 - 1 unit ripe fruit = 1 unit consumption
 - Unripe fruit can be harvested early.
 - 1 unit unripe fruit = 1 \(- L \) units consumption
 - Fraction of fruit harvested early: \(h_t \in [0, 1] \)

\[Y_t \text{ seeds} \downarrow \quad \text{Unripe fruit: } h_t(1 - L)Y_t. \]
\[\text{Early consumers: } \lambda_t C_{1t} \downarrow \quad \text{Ripe fruit: } (1 - h_t)Y_t. \]
\[\text{Late consumers: } (1 - \lambda_t)C_{2t} \downarrow \quad t \rightarrow t + 1 \]
Non-state contingent. Risk free return r

Invested at end of period t, smooth consumption and liquidity for period $t+1$.

Reserve choice S_{t+1} not contingent on liquidity need λ_{t+1}
Inter-period debt

The standard one period debt in the literature

- Does not directly alleviate liquidity constraints
Intra-period debt

- A credit line
- Directly alleviates liquidity constraints
- Key differences with reserves:
 - Added state contingency
 - Intra-period debt: sacrifice today’s budget constraint
 - Reserves: sacrifice yesterday’s budget constraint
 - Distinction is important when there is growth
 - Presence of intra-period debt increases the costs of default
Equilibrium

- Rest of model follows standard Eaton-Gersovitz setting
- Planner is strategic. Compare autarky value with credit access value.
- If default:
 - No borrowing for an exogenous period
 - Can still save
 - All debt forgiven upon reentry
- Standard Markov equilibrium.
Framework can generate realistic levels of debt and reserves
- 70% debt to (quarterly) gdp and 30% reserves to (quarterly) gdp
- These are empirical values for Argentina (1993-2001)

Requires the process λ_t to have disaster risk like properties
- Most of the time liquidity needs are moderate
- Sometimes it can get really high

Naturally begs the question: what is λ_t?
Extension: Twin-Crises Model

- Microfoundation: connect \(\lambda_t \) to coordination problems within the domestic banking sector
 - Demand deposits
 - Domestic households can run
- Use global game methods for equilibrium selection
 - Extend Goldstein and Pauzner (2005) and embed in current framework; \(\lambda_t \) depends on
 - Output (macro fundamentals)
 - Total liquidity supply (domestic and foreign)
 - Expenditures
 - Sovereign bond prices directly affect liquidity supply and expenditures
- Self-filling outcomes and feedback
- On equilibrium path \(\lambda_t \) could be small while off equilibrium path \(\lambda_t \) large
 - War chest of reserves rule out bad equilibria; even thought sitting idle on the equilibrium path.
Embed growth and liquidity concerns into Eaton-Gersovitz framework

Can rationalize
- Sovereign debt capacity
- International Reserves
- Twin (banking and sovereign) crises