We study the optimal lockdown policy for a planner who wants to control the fatalities of a pandemic while minimizing the output costs of the lockdown. We use the SIR epidemiology model and a linear economy to formalize the planners dynamic control problem. The optimal policy depends on the fraction of infected and susceptible in the population. We parametrize the model using data on the COVID-19 pandemic and the economic breadth of the lockdown. The quantitative analysis identifies the features that shape the intensity and duration of the optimal lockdown policy. Our baseline parametrization is conditional on a 1% of infected agents at the outbreak, no cure for the disease, and the possibility of testing. The optimal policy prescribes a severe lockdown beginning two weeks after the outbreak, covers 60% of the population after a month, and is gradually withdrawn covering 20% of the population after 3 months. The intensity of the lockdown depends on the gradient of the fatality rate as a function of the infected, and on the assumed value of a statistical life. The absence of testing increases the economic costs of the lockdown, leads to worse welfare outcomes and shortens the duration of the optimal lockdown.

More on this topic

BFI Working Paper·Mar 10, 2025

The Curious Surge of Productivity in U.S. Restaurants

Austan Goolsbee, Chad Syverson, Rebecca Goldgof, and Joe Tatarka
Topics: COVID-19, Employment & Wages, Industrial Organization
BFI Working Paper·Feb 10, 2025

Policy Interventions and China’s Stock Market in the Early Stages of the COVID-19 Pandemic

Steven Davis, Dingqian Liu, Xuguang Simon Sheng, and Yan Wang
Topics: COVID-19, Financial Markets
BFI Working Paper·Feb 4, 2025

Local GDP Estimates Around the World

Esteban Rossi-Hansberg and Jialing Zhang
Topics: COVID-19, Economic Mobility & Poverty