We describe methods of combining administrative and survey data to improve the measurement of income. We begin by decomposing the total survey error in the mean of survey reports of dollars received from a government transfer program. We decompose this error into three parts, generalized coverage error (which combines coverage and unit non-response error and any error from weighting), item non-response or imputation error, and measurement error. We then discuss these three sources of error in turn and how linked administrative and survey data can assess and reduce each of these sources. We then illustrate the potential of linked data by showing how using linked administrative variables improves the measurement of income and poverty in the Current Population Survey, focusing on the substitution of administrative for survey data for three government transfer programs. Finally, we discuss how one can examine the accuracy of the underlying links used in the combined data.

More on this topic

BFI Working Paper·Jun 7, 2025

The Local Root of Wage Inequality

Hugo Lhuillier
Topics: Employment & Wages
BFI Working Paper·Jun 5, 2025

Firm Premia and Match Effects in Pay vs. Amenities

Anders Humlum, Mette Rasmussen, and Evan K. Rose
Topics: Employment & Wages
BFI Working Paper·May 19, 2025

Remote Work, Employee Mix, and Performance

Cevat Giray Aksoy, Nicholas Bloom, Steven Davis, Victoria Marino, and Cem Özgüzel
Topics: Employment & Wages