Field experiments conducted with the village, city, state, region, or even country as the unit of randomization are becoming commonplace in the social sciences. While convenient, subsequent data analysis may be complicated by the constraint on the number of clusters in treatment and control. Through a battery of Monte Carlo simulations, we examine best practices for estimating unit-level treatment effects in cluster-randomized field experiments, particularly in settings that generate short panel data. In most settings we consider, unit-level estimation with unit fixed effects and cluster-level estimation weighted by the number of units per cluster tend to be robust to potentially problematic features in the data while giving greater statistical power. Using insights from our analysis, we evaluate the effect of a unique field experiment: a nationwide tipping field experiment across markets on the Uber app. Beyond the import of showing how tipping affects aggregate market outcomes, we provide several insights on aspects of generating and analyzing cluster-randomized experimental data when there are constraints on the number of experimental units in treatment and control.

More Research From These Scholars

BFI Working Paper Mar 2, 2020

Random-Coefficients Logit Demand Estimation with Zero-Valued Market Shares

Jean-Pierre Dubé, Ali Hortaçsu, Joonhwi Joo
BFI Working Paper Apr 25, 2020

Estimating the Fraction of Unreported Infections in Epidemics with a Known Epicenter: An Application to COVID-19

Ali Hortaçsu, Jiarui Liu, Timothy Schwieg
Topics:  COVID-19
BFI Working Paper Jul 20, 2020

Financial Fragility in the COVID-19 Crisis: The Case of Investment Funds in Corporate Bond Markets

Antonio Falato, Itay Goldstein, Ali Hortaçsu
Topics:  COVID-19, Financial Markets