Field experiments conducted with the village, city, state, region, or even country as the unit of randomization are becoming commonplace in the social sciences. While convenient, subsequent data analysis may be complicated by the constraint on the number of clusters in treatment and control. Through a battery of Monte Carlo simulations, we examine best practices for estimating unit-level treatment effects in cluster-randomized field experiments, particularly in settings that generate short panel data. In most settings we consider, unit-level estimation with unit fixed effects and cluster-level estimation weighted by the number of units per cluster tend to be robust to potentially problematic features in the data while giving greater statistical power. Using insights from our analysis, we evaluate the effect of a unique field experiment: a nationwide tipping field experiment across markets on the Uber app. Beyond the import of showing how tipping affects aggregate market outcomes, we provide several insights on aspects of generating and analyzing cluster-randomized experimental data when there are constraints on the number of experimental units in treatment and control.

More on this topic

BFI Working Paper·Sep 24, 2024

Moving to Opportunity, Together

Seema Jayachandran, Lea Nassal, Matthew J. Notowidigdo, Marie Paul, Heather Sarsons, and Elin Sundberg
Topics: Employment & Wages
BFI Working Paper·Sep 16, 2024

Why Do Workers Dislike Inflation? Wage Erosion and Conflict Costs

Joao Guerreiro, Jonathon Hazell, Chen Lian, and Christina Patterson
Topics: Employment & Wages
BFI Working Paper·Aug 15, 2024

Disemployment Effects of Unemployment Insurance: A Meta-Analysis

Jonathan Cohen and Peter Ganong
Topics: Employment & Wages