We study the extent to which advertisers benefit from data that are shared across applications. These types of data are viewed as highly valuable for digital advertisers today. Meanwhile, product changes and privacy regulation threaten the ability of advertisers to use such data. We focus on one of the most common ways advertisers use offsite data and run a large-scale study with hundreds of thousands of advertisers on Meta. Within campaigns, we experimentally estimate both the effectiveness of advertising under business as usual, which uses offsite data, as well as how that would change under a loss of offsite data. Using recently developed deconvolution techniques, we flexibly estimate the underlying distribution of treatment effects across our sample. We find a median cost per incremental customer using business as usual targeting techniques of $43.88 that under the median loss in effectiveness would rise to $60.19, a 37% increase. Similarly, analyzing purchasing behavior six months after our experiment, ads delivered with offsite data generate substantially more long-term customers per dollar, with a comparable delta in costs. Further, there is evidence that small scale advertisers and those in CPG, Retail, and E-commerce are especially affected. Taken together, our results suggest a substantial benefit of offsite data across a wide range of advertisers, an important input into policy in this space.

More on this topic

BFI Working Paper·Apr 15, 2025

Large Language Models, Small Labor Market Effects

Anders Humlum and Emilie Vestergaard
Topics: Technology & Innovation
BFI Working Paper·Jan 28, 2025

Drive Down the Cost: Learning by Doing and Government Policies in the Global EV Battery Industry

Panle Jia Barwick, Hyuk-soo Kwon, Shanjun Li Nahim, and Bin Zahur
Topics: Energy & Environment, Technology & Innovation
BFI Working Paper·Dec 10, 2024

Learning Fundamentals from Text

Alex G. Kim, Maximilian Muhn, Valeri Nikolaev, and Yijing Zhang
Topics: Technology & Innovation