We investigate the potential for Large Language Models (LLMs) to enhance scientific practice within experimentation by identifying key areas, directions, and implications. First, we discuss how these models can improve experimental design, including improving the elicitation wording, coding experiments, and producing documentation. Second, we discuss the implementation of experiments using LLMs, focusing on enhancing causal inference by creating consistent experiences, improving comprehension of instructions, and monitoring participant engagement in real time. Third, we highlight how LLMs can help analyze experimental data, including pre-processing, data cleaning, and other analytical tasks while helping reviewers and replicators investigate studies. Each of these tasks improves the probability of reporting accurate findings.

More on this topic

BFI Working Paper·Jan 28, 2025

Drive Down the Cost: Learning by Doing and Government Policies in the Global EV Battery Industry

Panle Jia Barwick, Hyuk-soo Kwon, Shanjun Li Nahim, and Bin Zahur
Topics: Energy & Environment, Technology & Innovation
BFI Working Paper·Dec 10, 2024

Learning Fundamentals from Text

Alex G. Kim, Maximilian Muhn, Valeri Nikolaev, and Yijing Zhang
Topics: Technology & Innovation
BFI Working Paper·Oct 7, 2024

12 Best Practices for Leveraging Generative AI in Experimental Research

Samuel Chang, Andrew Kennedy, Aaron Leonard, and John List
Topics: Technology & Innovation