This paper is about measuring state dependence in dynamic discrete outcomes. I develop a nonparametric dynamic potential outcomes (DPO) model and propose an array of parameters and identifying assumptions that can be considered in this model. I show how to construct sharp identi ed sets under combinations of identifying assumptions by using a exible linear programming procedure. I apply the analysis to study state dependence in unemployment for working age high school educated men using an extract from the 2008 Survey of Income and Program Participation (SIPP). Using only nonparametric assumptions, I estimate that state dependence accounts for at least 30-40% of the four-month persistence in unemployment among high school educated men.

More on this topic

BFI Working Paper·Feb 20, 2025

Non est Disputandum de Generalizability? A Glimpse into The External Validity Trial

John List
Topics: Uncategorized
BFI Working Paper·Feb 18, 2025

How Costly Are Business Cycle Volatility and Inflation? A Vox Populi Approach

Dimitris Georgarakos, Kwang Hwan Kim, Olivier Coibion, Myungkyu Shim, Myunghwan Andrew Lee, Yuriy Gorodnichenko, Geoff Kenny, Seowoo Han, and Michael Weber
Topics: Uncategorized
BFI Working Paper·Feb 14, 2025

Decisions Under Risk are Decisions Under Complexity: Comment

Daniel Banki, Uri Simonsohn, Robert Walatka, and George Wu
Topics: Uncategorized