The primary motivation behind quantitative modeling in international trade and many other fields is to shed light on the economic consequences of policy changes. To help assess and potentially strengthen the credibility of such quantitative predictions we introduce an IV-based goodness-of-fit measure that provides the basis for testing causal predictions in arbitrary general-equilibrium environments as well as for estimating the average misspecification in these predictions. As an illustration of how to use our IV-based goodness-of-fit measure in practice, we revisit the welfare consequences of Trump’s trade war predicted by Fajgelbaum et al. (2020).

More on this topic

BFI Working Paper·Jun 10, 2025

Measuring Markets for Network Goods

Leonardo Bursztyn, Matthew Gentzkow, Rafael Jiménez-Durán, Aaron Leonard, Filip Milojević, and Christopher Roth
Topics: Uncategorized
BFI Working Paper·May 28, 2025

The Reverse Cargo Cult: Why Authoritarian Governments Lie to Their People

Konstantin Sonin
Topics: Uncategorized
BFI Working Paper·May 28, 2025

Authoritarian Propaganda and Social Networks

Konstantin Sonin
Topics: Uncategorized