The primary motivation behind quantitative modeling in international trade and many other fields is to shed light on the economic consequences of policy changes. To help assess and potentially strengthen the credibility of such quantitative predictions we introduce an IV-based goodness-of-fit measure that provides the basis for testing causal predictions in arbitrary general-equilibrium environments as well as for estimating the average misspecification in these predictions. As an illustration of how to use our IV-based goodness-of-fit measure in practice, we revisit the welfare consequences of Trump’s trade war predicted by Fajgelbaum et al. (2020).

More on this topic

BFI Working Paper·Feb 20, 2025

Non est Disputandum de Generalizability? A Glimpse into The External Validity Trial

John List
Topics: Uncategorized
BFI Working Paper·Feb 18, 2025

How Costly Are Business Cycle Volatility and Inflation? A Vox Populi Approach

Dimitris Georgarakos, Kwang Hwan Kim, Olivier Coibion, Myungkyu Shim, Myunghwan Andrew Lee, Yuriy Gorodnichenko, Geoff Kenny, Seowoo Han, and Michael Weber
Topics: Uncategorized
BFI Working Paper·Feb 14, 2025

Decisions Under Risk are Decisions Under Complexity: Comment

Daniel Banki, Uri Simonsohn, Robert Walatka, and George Wu
Topics: Uncategorized