We use stock exchange message data to quantify the negative aspect of high-frequency trading, known as “latency arbitrage.” The key difference between message data and widely-familiar limit order book data is that message data contain attempts to trade or cancel that fail. This allows the researcher to observe both winners and losers in a race, whereas in limit order book data you cannot see the losers, so you cannot directly see the races. We find that latency-arbitrage races are very frequent (about one per minute per symbol for FTSE 100 stocks), extremely fast (the modal race lasts 5-10 millionths of a second), and account for a large portion of overall trading volume (about 20%). Race participation is concentrated, with the top 6 firms accounting for over 80% of all race wins and losses. Most races (about 90%) are won by an aggressive order as opposed to a cancel attempt; market participants outside the top 6 firms disproportionately provide the liquidity that gets taken in races (about 60%). Our main estimates suggest that eliminating latency arbitrage would reduce the market’s cost of liquidity by 17% and that the total sums at stake are on the order of $5 billion annually in global equity markets.

More Research From These Scholars

BFI Working Paper Feb 18, 2020

A Theory of Stock Exchange Competition and Innovation: Will the Market Fix the Market?

Eric Budish, Robin S. Lee, John J. Shim
Topics:  Financial Markets
BFI Working Paper Apr 1, 2020

R < 1 as an Economic Constraint: Can We “Expand the Frontier” in the Fight Against Covid-19?

Eric Budish
Topics:  COVID-19